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1 Introduction

In the analysis of generalization bounds for machine learning algorithms, a central theme is the notion
of algorithmic stability — a measurement of how sensitive a learning algorithm is to perturbations
to its input. The notion that generalization is closely tied to stability is rather intuitive; indeed,
under most formulations average-case stability is equivalent to expected generalization error, but is
often unwieldy to work with. Introduced in Bousquet and Elisseeff [2], the uniform stability of an
algorithm quantifies how much – in the worst case – an algorithm depends on the training data,
and thus can be used to bound the expected generalization error of a learning algorithm. They
also presented a high-probability generalization bound over the randomness of the data; however
the presented bound is only meaningful when the stability parameter γ is O(1/n), where n is the
number of training samples.

This high-probability generalization bound was improved in Feldman and Vondrak [4], which
allows for stability up to O(1/

√
n). Such an improvement was notable as it allowed for generalization

bounds in a number of algorithms with O(1/
√
n)-stability such as Empirical Risk Minimization [8]

and Stochastic Gradient Descent [5]. A streamlined proof which removes another log n factor was
recently shown in Bousquet et al. [3].

In this paper we attempt to sharpen with high probability generalization bounds for learning
algorithms that do not quite possess the worst-case notion of uniform stability. To that end, we
consider the notion of almost-everywhere stability, first studied by Kutin and Niyogi [6]. Informally
speaking, almost everywhere stability captures the scenario where a learning algorithm is stable with
high probability over the input, but occasionally we get unlucky and potentially have a much larger
stability coefficient. Depending on how stability is measured and over what events the probability
is taken over, one obtains a whole zoo of weakened notion of stability. Intuitively, the effectiveness
of the generalization bound depends on the relative sizes of the failure probability and the sizes
of the two stability coefficients. In a certain regime, Kutin and Niyogi [6] are able to show with
high probability generalization when the stability coefficient is O(1/n) and the failure probability is
O(2−Ω(n)).

The paper is organized as follows. In Section 2, we introduce the notation for almost-everywhere
algorithmic stability and some key technical lemmas useful for the proof. In Section 3, we prove
analogues of the main results in Bousquet et al. [3] and arrive at our improved generalization bounds
for almost-everywhere stable learning algorithms. In Section 4, we construct a few toy examples
where our results are applicable and highlight some of the difficulties with constructing applications.
We conclude in Section 5 with the takeaways of our analysis and potential future directions.
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2 Preliminaries

First, we introduce the notation to facilitate the discussion. We find the notation in the literature
to be rather varied and confusing, so we attempt to unify the discussion with judicious choice of
notation.

A learning algorithm is a function that maps training sets S ∈ Zn to a learned hypothesis
AS ∈ H. We measure the performance of the hypothesis via a uniformly bounded loss function
` : H × Z → [0, L]. The true risk is defined as R(AS) = Ez[`(AS(x), y)], and the empirical risk is
defined as Remp(AS) = 1

n

∑n
i=1 `(AS(xi), yi).

Central to the semantics of stability is precisely what a learning algorithm is stable against, and
in what sense stability is measured. To that end, we introduce the notation Si←z to denote the same
training set with sample i replaced with z = (x, y). We say that a learning algorithm is uniformly
stable with stability parameter γ if

sup
i,z,z′,S

|`(AS(x), y)− `(ASi←z′ (x), y)| ≤ γ.

Note that uniform stability is asking quite a bit out of our learning algorithm. It needs to be
robust not only to training sets S, but also to adversarial corruptions z′ and adversarial test points
z. It was recently shown Feldman and Vondrak [4], Bousquet et al. [3] that this notion of stability
yields nearly optimal high probability bounds on the generalization gap.

Theorem 2.1 (Bousquet et al. [3]). If AS is uniformly stable with parameter γ, then with probability
1− δ over the choice of S,

|R(AS)−Remp(As)| ≤ c1γ log n log

(
1

δ

)
+ c2L

√
log(1/δ)

n
,

where c1 and c2 are absolute constants (i.e. independent of n, δ, L).

To relax the notion of uniform stability, we introduce the following two notions of almost-
everywhere hypothesis stability, à la Kutin and Niyogi [6].

Definition 2.2 (Strong hypothesis stability). We say that AS is (γ, δ) strong hypothesis stable if
with probability at least 1− δ over the choice of S, we have

sup
i,z,z′

|`(AS(x), y)− `(ASi←z′ (x), y)| ≤ γ.

By further relaxing the requirement that the algorithm must be robust to adversarial data cor-
ruption, we obtain weak hypothesis stability.

Definition 2.3 (Weak hypothesis stability). We say that AS is (γ, δ) weak hypothesis stable if with
probability at least 1− δ over the choice of S and z′, we have

sup
i,z
|`(AS(x), y)− `(ASi←z′ (x), y)| ≤ γ.

Uniform stability plays well with bounded differences, since if we view the inputs as deterministic
the loss function satisfies a bounded differences property. Since we have relaxed uniform stability,
we also need an analogous relaxation of bounded differences. To that end, we have the following
notion.
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Definition 2.4 (Strong bounded differences). Let f(S) = f(Z1, . . . , Zn) be a measurable function
of random variables. We say that f is strongly difference-bounded by (M,γ, δ) if with probability at
least 1− δ over the choice of S, any corruption Si←z

′
satisfies∣∣∣f(S)− f(Si←z
′
)
∣∣∣ ≤ γ.

Furthermore, we have that for any S, Si←z
′

that∣∣∣f(S)− f(Si←z
′
)
∣∣∣ ≤M,

that is, M is a uniform bound on the change one stability of f .

The weak difference bounded property can be defined similarly, where we also have randomness
in the data corruption z′. With these definitions in mind, we can now state a corresponding result
for the bounded differences inequality (also known in the literature as McDiarmid/Azuma-Hoeffding
inequality).

Theorem 2.5 (Kutin and Niyogi [6]). Suppose f is strongly difference-bounded by (M,γ, δ). Let
K ≥ γ. Then for any τ > 0 we have

P[|f − E[f ]| ≥ τ ] ≤ 2 exp

(
−τ2

8nγ2

)
+

2nMδ

γ
.

Given a uniformly stable learning algorithm, one can apply the (uniform) bounded differences
inequality to obtain a generalization bound [2]. However, these bounds are only optimal in the regime
where γ = O(1/n), which is too restrictive in certain settings. For example, regularized convex SGD
yields a stability parameter O(log n/n1/2) [8]. In the recent work of Feldman and Vondrak [4], this
gap was closed, with a nearly optimal generalization bound (compared to the sample efficiency) up
to log n factors. Following the breakthrough of Feldman and Vondrak [4], an alternative simplified
proof was given by Bousquet et al. [3]. The key difference in proof strategy is to work instead with
moment bounds, and then translate to tail bounds. As the following standard result shows, tail
bounds are equivalent to moment bounds, thus allowing us to interchange between the two.

Lemma 2.6 (Equivalence of tails and moments [3, Lemma 1]). If for any δ ∈ (0, 1), we have with
probability at least 1− δ that |Y | ≤ a

√
log(e/δ) + b log(e/δ), then for any p ≥ 1, we have

‖Y ‖p ≤ 3
√
pa+ 9pb.

Conversely, if ‖Y ‖p ≤
√
pa+ pb for p ≥ 1, then with probability at least 1− δ we have

|Y | ≤ e(a
√

log(e/δ) + b log(e/δ)).

Directly converting theorem 2.5 into a moment inequality is a bit troublesome because of the
second term’s independence of τ . However, for our purposes, not only will the change-one differences
be uniformly bounded by M , but also we have |f(S)| ≤ M a.s.. In Bousquet et al. [3], they note
that a moment form of the bounded differences inequality follows immediately from Theorem 15.4
of Boucheron et al. [1]. Unfortunately, the lack of an almost sure bound on the stability complicates
the details, so that the proof is not quite as immediate. However, the proof strategy of Theorem
15.4 can be accommodated for our setting, at the cost of more tedious analysis of Theorem 15.4.
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Lemma 2.7 (Moment form of high probability bounded differences inequality). Suppose f is strongly
difference bounded by (M,γ, δ), and further that f is bounded a.s. by M . Then

‖f(S)− E[f(S)]‖q ≤ 2(γ + δ
1

2(q−1)M)
√
qn.

Similarly, if f is weakly difference bounded by (M,γ, δ) and f is bounded a.s. by M , then

‖f(S)− E[f(S)]‖q ≤ 2(γ + 2δ
1

4(q−1)M)
√
qn.

Proof. We follow the notation and proof of Theorem 15.4 in Boucheron et al. [1]. First define

V + =

n∑
i=1

EZ′ [(f(S)− f(Si←z
′
)2
+].

The key is to use Lemma 15.1 of Boucheron et al. [1], the generalization of the Efron-Stein inequality,
to bound higher order moments. Define mq = ‖(f(S)− E[f(S)])+‖q. Also, we will find it convenient
to introduce the notation

ck = γk(1− δ) +Mkδ.

The Efron-Stein inequality precisely states that m2
2 ≤ nc2.

Then Lemma 15.1 implies that

mq
q ≤ m

q
q−1 + (q − 1)E[V +(f(S)− E[f(S)])q−2

+ ].

Applying Hölder’s inequality with (q − 1, q−1
q−2 ) to the latter expectation, we obtain

E[V +(f(S)− E[f(S)])q−2
+ ] ≤ E[(V +)q−1]1/(q−1)mq−2

q−1.

Expanding out the expectation, noting that we are summing over all (q − 1) tuples and applying
strong bounded differences yields an upper bound of

n(sup
i,z′

(f(S)− f(Si←z
′
))2(q−1))1/(q−1)mq−2

q−1 ≤ nc
1/(q−1)
2(q−1) m

q−2
q−1.

Hence we obtain the recursive inequality

mq
q ≤ m

q
q−1 + n(q − 1)c

1/(q−1)
2(q−1) m

q−2
q−1.

Define the new constant bk = c
1/k
k . It is easy to verify that bk is increasing in k by the Lp norm

inequalities. The recursive inequality thus becomes

mq
q ≤ m

q
q−1 + n(q − 1)b22(q−1)m

q−2
q−1.

Let’s first compute a few base cases. For q = 2, the Efron-Stein inequality implies that m2
2 ≤ nc2.

Hence for q = 3, as Hölder implies that m1 ≤ m2 ≤
√
nc2 = b2

√
n, the inequality implies that

m3
3 ≤ n3/2(b32 + 2b24b2) ≤ 3n3/2b34.
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We will show by induction that mq ≤ 2b2(q−1)
√
qn. Clearly the base cases of q = 2, 3 are satisfied.

For the inductive step, we have

mq
q ≤ m

q
q−1 + n(q − 1)b22(q−1)m

q−2
q−1

≤ nq/2
(

2q(q − 1)q/2bq2(q−2) + (q − 1)2q−2b22(q−1)b
q−2
2(q−2)(q − 1)q/2−1

)
≤ nq/2

(
2q(q − 1)q/2bq2(q−1) + 2q−2(q − 1)q/2bq2(q−1)

)
= nq/2bq2(q−1)2

q · 5

4
(q − 1)q/2

≤ nq/2bq2(q−1)2
qqq/2.

Hence mq ≤ 2b2(q−1)
√
qn. Using the inequality (xp + yp)1/p ≤ x + y yields b2(q−1) = (γ2(q−1)(1 −

δ) +M2(q−1)δ)1/(2(q−1)) ≤ γ + δ1/(2(q−1))M , which gives the desired bound on the moment.
Let’s next walk through what happens for weakly bounded differences. For a training set S,

let δ(S) be the fraction of bad z′, i.e. z′ such that supi |f(S) − f(Si←z
′
)| > γ. By definition,

ES [δ(S)] = δ. We also have that

V + ≤ n((1− δ(S))γ2 + δ(S)M2)

Hence
ES [(V+)q−1] ≤ nq−1 ES [((1− δ(S))γ2 + δ(S)M2)q−1].

Fix some δ′ > δ. PS [δ(S) > δ′] ≤ δ/δ′, and thus we can upper bound

ES [(V+)q−1] ≤ nq−1

[(
1− δ

δ′

)
((1− δ′)γ2 + δ′M2)q−1 +

δ

δ′
M2(q−1)

]
:= nq−1(b′2(q−1))

2(q−1).

The rest of the recursion is identical, except with b′2(q−1) instead of b2(q−1), and so for weak bounded

diffs we get mq ≤ 2b′2(q−1)

√
qn. To upper bound the b′, set δ′ =

√
δ; we then obtain

b′2(q−1) =
[(

1−
√
δ
)

((1−
√
δ)γ2 +

√
δM2)q−1 +

√
δM2(q−1)

] 1
2(q−1)

≤
√

(1−
√
δ)γ2 +

√
δM2 + δ

1
4(q−1)M

≤ γ + δ
1
4M + δ

1
4(q−1)M

≤ γ + 2δ
1

4(q−1)M.

This yields the stated bound on the moment.

Remark 2.8. The tension between γ, δ,M , and q is evident from the moment bound of lemma 2.7. For
comparison, note the trivial upper bound of 2M

√
qn by using the uniform boundedness of M (this

is just the moment form of bounded differences). Also, if δ = 0 then we recover the lower bound
corresponding to the uniform stability moment bound of 2γ

√
qn. Now, δ must be small relative

to q; otherwise the moment bound will be roughly 2(γ + M)
√
qn, hence rendering it ineffective. If

δ = exp(−Ω(n)) and q = O(log n), then γ+δO(1/(q−1))M = γ+exp(−Ω(n/ log n))M , which smoothly
interpolates between the lower and upper limits of the moment bounds. Also, observe that we only
lose δO(1/(q−1)) factors when we assume weak difference bounded f rather than strongly difference
bounded f . We will return to this point after proving the main result, theorem 3.5.
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In the setting of uniform bounded differences (δ = 0), note that we can use the inequality V + ≤ γ.
This is precisely how the proof of Theorem 15.4 in Boucheron et al. [1] proceeds. We point out the
interpretation that leveraging this a.s. bound can be seen as an application of Hölder with the
pair (∞, 1). For δ > 0, as we seek a recursive inequality, using the pair (q − 1, q−1

q−2 ) is the tightest
application one can hope for.

3 Improved generalization bounds

Before we dive into the details of improving the generalization bound, we first show that the expected
generalization gap can be bounded under strong or weak hypothesis stability.

Proposition 3.1. Suppose AS has strong (or weak) (γ, δ) hypothesis stability and the loss function
` is uniformly bounded by L. Then

ES [R(AS)−Remp(AS)] ≤ (1− δ)γ + δL.

Proof. First apply symmetry and the i.i.d. assumption to rewrite

ES [R(AS)] = ES,S′
[

1

n

n∑
i=1

`(AS(x′i), y
′
i)

]
.

Similarly, we can write

ES [Remp(AS)] = ES

[
1

n

n∑
i=1

`(AS(xi), yi)

]
= ES,S′

[
1

n

n∑
i=1

`(A
Si←z

′
i
(x′i), y

′
i)

]
Hence we have

ES [R(AS)−Remp(AS)] = ES,S′
[

1

n

n∑
i=1

(
`(AS(x′i), y

′
i)− `(ASi←z′i (x

′
i), y

′
i)
)]
.

Since z′i ∼ D, it follows that Si←z
′
i follows the same distribution as S. Hence by definition of strong

hypothesis stability, Si←z
′
i is good with probability 1− δ, and the term in the parentheses is upper

bounded by γ. Otherwise, with probability δ, the difference is at most L, since ` ≤ L. By symmetry,
the result follows.

For weak hypothesis stability, the same proof goes through, since we are taking expectations over
both S and S′, which absorbs the probability over the choice (S, z′) in definition 2.3.

Of course, we seek high probability generalization bounds, which require a bit more effort. How-
ever, the bound in expectation is suggestive of the final form of the high probability result. With
this motivation in mind, we set out to prove analogues of key statements in Bousquet et al. [3].
First, define

gi = gi(S) , Ez′ [Ez[`(ASi←z′ (x), y)]− `(ASi←z′ (xi), yi)].
To break this down, note that `(ASi←z′ (x), y) is the change-one loss estimate when we corrupt the
data at position i with z′ = (x′, y′) and test on point x. Thus, gi is looking at the average bias over
data corruptions of the change-one test error estimate at data point zi = (xi, yi) compared to the
expectation over all test points z = (x, y).

The point is that gi measures the loss sensitivity of the learning algorithm to corruptions at
training point i. Perhaps unsurprisingly, then, it suffices to study the gi in order to bound the
generalization gap. We make this intuition precise by proving a couple key properties of gi which
are required in the main theorem.
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Lemma 3.2 (cf. Lemma 7 in Bousquet et al. [3]). Suppose AS has strong or weak (γ, δ) hypothesis
stability with parameter γ and a bounded loss function ` ≤ L. Then the following hold:

(1) Under strong hypothesis stability, with probability at least 1− δ over the choice of S, we have∣∣∣∣∣|R(AS)−Remp(AS)| −

∣∣∣∣∣
n∑
i=1

gi

∣∣∣∣∣
∣∣∣∣∣ ≤ 2γ.

Under weak hypothesis stability, with probability at least 1−
√
δ over the choice of S, we have∣∣∣∣∣|R(AS)−Remp(AS)| −

∣∣∣∣∣
n∑
i=1

gi

∣∣∣∣∣
∣∣∣∣∣ ≤ 2(1−

√
δ)γ + 2

√
δL.

In other words, to study the generalization error, it suffices to study the gi.

(2) For all i, we have |gi| ≤ L and E[E[gi|z[n]\i]] = 0.

(3) The functions gi satisfy (L, 2(1−
√
δ)γ + 2

√
δL,
√
δ) strong or weak bounded differences.

Proof. Recalling the definitions of R(AS) and Remp(AS), we have

|n(R(AS)−Remp(AS))| =

∣∣∣∣∣
n∑
i=1

Ez[`(AS(x), y)]− `(AS(xi), yi)

∣∣∣∣∣.
Now, for each i insert the terms

Ez′ [`(AS(xi), yi)− `(ASi←z′ (xi), yi)] + Ez′ [Ez[`(ASi←z′ (x), y)]− `(AS(x), y)] (1)

into the summation.
Note that these terms are precisely what is needed to transform the generalization gap on data

point i to gi. We can then apply the triangle inequality to isolate the absolute values of these terms.

|n(R(AS)−Remp(AS))| ≤

∣∣∣∣∣
n∑
i=1

gi

∣∣∣∣∣+

n∑
i=1

|Ez[Ez′ [`(AS(x), y)− `(ASi←z′ (x), y)]]|

+

n∑
i=1

|Ez′ [`(AS(xi), yi)− `(ASi←z′ (xi), yi)]|

Consider for example the terms

n∑
i=1

|Ez′ [`(AS(xi), yi)− `(ASi←z′ (xi), yi)]|. (2)

Under strong hypothesis stability, with probability 1− δ over the choice of S, we have that the
argument of the expectation for a particular i is uniformly bounded by γ. Hence the expectation is
also bounded by γ with probability 1 − δ. Note also that once this holds for a particular i, it also
holds for all i simultaneously by the definition of strong hypothesis stability. Hence this sum is at
most γn with probability 1− δ.
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On the other hand, under weak hypothesis stability, we no longer have a uniform bound on the
expectation over z′. We deal with this using a similar argument as in lemma 3.4. For a dataset S,
define δ(S) to be the fraction of z′ such that

sup
i,z
|`(AS(x), y)− `(ASi←z′ (x), y)| > γ

By definition of weak hypothesis stability, we have that ES [δ(S)] = δ. For each S, we can thus
bound (2) by n((1 − δ(S))γ + δ(S)L). With probability at least 1 −

√
δ over the choice of S, we

therefore must have δ(S) ≤
√
δ and hence we can upper bound (2) by n((1 −

√
δ)γ +

√
δL). Note

that a similar argument applies to the second term of eq. (1). The expectation over z is irrelevant
since in definitions 2.2 and 2.3 the bound holds uniformly over z.

Putting it all together, under strong hypothesis stability we obtain that

|n(R(AS)−Remp(AS))| ≤ 2γn+

∣∣∣∣∣
n∑
i=1

gi

∣∣∣∣∣,
with probability 1− δ. Under weak hypothesis stability,

|n(R(AS)−Remp(AS))| ≤ 2nγ(1−
√
δ) + 2nL

√
δ +

∣∣∣∣∣
n∑
i=1

gi

∣∣∣∣∣,
with probability 1−

√
δ.

Next, since ` ∈ [0, L], point (2) immediately follows.
Finally, we show that gi satisfies bounded differences wrt all variables j 6= i. We can write∣∣∣gi(S)− gi(Sj←z

′
j )
∣∣∣ =

∣∣∣Ez′ [Ez[`(ASi←z′ (x), y)]− `(ASi←z′ (xi), yi)]

− Ez′ [Ez[`(A
S
i←z′,j←z′

j
(x), y)]− `(A

S
i←z′,j←z′

j
(xi), yi)]

∣∣∣
≤
∣∣∣Ez Ez′ [`(ASi←z′ (x), y)− `(A

S
i←z′,j←z′

j
(x), y)]

∣∣∣
+
∣∣∣Ez′ [`(ASi←z′ (xi), yi)− `(ASi←z′,j←z′j (xi), yi)]

∣∣∣
Under weak stability, we can apply a similar argument as we did earlier. For fixed S, define δ(S) to

be the fraction of z′ such that supj,z,z′j

∣∣∣`(ASi←z′ (x), y)− `(A
S
i←z′,j←z′

j
(x), y)

∣∣∣ > γ. Since Si←z
′

is

distributed identically to S, by definition of strong hypothesis stability it follows that ES [δ(S)] = δ.
So with probability at least 1−

√
δ over z′, we have that the difference is bounded by

√
δ; otherwise,

it’s bounded in absolute value by L. Hence the first term can be bounded by (1 −
√
δ)γ +

√
δL.

An entirely analogous argument handles the second term of (2). In summary, the gi have strong
bounded difference (L, 2(1−

√
δ)γ + 2

√
δL,
√
δ).

3.1 Proving gli has weak bounded differences

Before jumping into the moment bound for
∑n
i=1 gi, we introduce a few new pieces of notation and

address a few technical points that are needed for the proof to go through.
In the proof, we reduce to the case where n = 2k by adding identically zero functions; this allows

for a cleaner analysis. The first key idea of Bousquet et al. [3] is to create a filtration of set systems
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B0, . . . , Bk with each Bi being a partition of [2k] into consecutive sets of size 2i. In other words, we
have

B0 =
{
{1}, . . . ,

{
2k
}}

; Bk =
{{

1, . . . , 2k
}}
.

Hence we have |Bi| = 2k−i, and for each set Bi ∈ Bi, we have
∣∣Bi∣∣ = 2i.

Now, for the gi, we will find it useful to analysis gi conditioned on various subsets of Z; in
particular define for l = 0, . . . , k the random variables

gli = E[gi|Zi, Z[n]\Bl(i)].

Thus, as l increases, we condition on fewer and fewer of the Zj . Put another way, the gli form a
reversed martingale.

In our general analysis, we assume that the gi have strong or weak bounded differences (M,γ, δ).
Under uniform bounded differences (i.e. δ = 0), it is immediate that the gli also have uniform
bounded differences γ. However, when δ > 0, which is the case we’re interested in, it is not
immediately obvious that the gli also have a strong or weak bounded differences property, and if so,
what those parameters would be. We now establish that in fact that the gli possess weak bounded
differences.

Lemma 3.3. Assume that gi has (M,γ, δ) weak bounded differences with respect to all but the ith
variable. Then gli(Zi, Z[n]\Bl(i)) has (M, (1−

√
δ)γ+

√
δM,
√
δ) weak bounded differences with respect

to all but the ith variable.

Proof. For fixed T = (Zi, Z[n]\Bl(i), Z
′), let δ(T ) be the fraction of ZBl(i)\{i} such that supj 6=i |gi(S)−

gi(S
j←Z′)| > γ. Then,∣∣gli(Zi, Z[n]\Bl(i))− gli(Zi, Z[n]\Bl(i) ← Z ′)

∣∣ ≤ EZ
Bl(i)\{i}

[∣∣∣gi(S)− gi(Sj←Z
′
)
∣∣∣ | Zi, Z[n]\Bl(i), Z

′
]

≤ (1− δ(T ))γ + δ(T )M

Since ET [δ(T )] = δ, it follows that δ(T ) ≤
√
δ with probability at least 1 −

√
δ, and thus with

probability 1−
√
δ, the difference is bounded by (1−

√
δ)γ +

√
δM .

Finally, combining the same strategy as above and lemma 2.7 yields a moment bound on gli−g
l+1
i .

Lemma 3.4. Suppose gli(Zi, Z[n]\Bl(i)) has (M,γ, δ) weak bounded differences. Then∥∥gli − gl+1
i

∥∥
p
(Zi, Z[n]\Bl+1(i)) ≤ 2

√
p2l(γ + 2δ(Zi, Z[n]\Bl+1(i))

1
4(p−1)M),

Furthermore, ∥∥gli − gl+1
i

∥∥
p
≤ 2
√
p2l
(
γ + 3δ

1
8(p−1)M

)
Proof. For fixed R = (Zi, Z[n]\B`+1(i)), let δ(R) be the fraction of (ZB`+1(i)\B`(i), Z

′) such that gli
has weak bounded differences with parameter γ when replacing a variable in Bl+1(i) \ Bl(i) with
Z ′. Then, gli conditioned on R has (M,γ, δ(R)) weak bounded diffs, so we can use 2.7 to bound the
conditional moment as

‖gli − gl+1
i ‖p(Zi, Z[n]\Bl+1(i)) ≤ 2

√
p2l(γ + 2δ(R)

1
4(p−1)M).
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We next integrate this bound to get a bound on
∥∥gli − gl+1

i

∥∥
p
, keeping in mind that ER[δ(R)] = δ.

Identically to the argument we’ve used before, we have that δ(R) >
√
δ with probability at most√

δ. If δ(R) ≤
√
δ, then we have that

‖gli − gl+1
i ‖p(R) ≤ 2

√
p2l(γ + 2δ

1
8(p−1)M).

Otherwise, we can naively bound

‖gli − gl+1
i ‖p(R) ≤ 2M ≤ 2

√
p2lM.

Therefore∥∥gli − gl+1
i

∥∥p
p

= ER
[∥∥gli − gl+1

i

∥∥p
p
(R)
]
≤ (2

√
p2`)p

[
(1−

√
δ)(γ + 2δ

1
8(p−1)M)p +

√
δMp

]
,

and hence ∥∥gli − gl+1
i

∥∥
p
≤ 2
√
p2`
[
γ + 2δ

1
8(p−1)M + δ

1
2pM

]
≤ 2
√
p2`
[
γ + 3δ

1
8(p−1)M

]
.

Theorem 3.5 (cf. Theorem 4 in Bousquet et al. [3]). Let Z = (Z1, . . . , Zn) ∈ Zn be independent
random variables and gi : Zn → R for i ∈ [n] be measurable functions such that

(1) |E[gi(Z)|Zi]| ≤M a.s.

(2) E[gi(Z)|Z[n]\i] = 0 a.s.

(3) gi has weak bounded difference (M,γ, δ) with respect to all but the ith variable.

Then for any p ≥ 2, we have∥∥∥∥∥
n∑
i=1

gi(Z)

∥∥∥∥∥
p

≤ 12
√

2pn(γ + 3δ
1

8(p−1)M) log n+ 4
√
pnM.

Proof. We summarize the steps of the proof and point out the key differences when gi do not satisfy
uniform bounded difference. We first note why each condition is useful. Conditions (1) and (2)
allow us to apply a moment form of the bounded differences inequality, while (3) allows us to apply
lemma 2.7.

Recall the gli defined earlier:
gli = E[gi|Zi, Z[n]\Bl(i)].

Similar to martingale inequalities, we consider consecutive differences in the gli. Since gki = E[gi|Zi]
and g0

i = gi (the original random variable), we obtain

gi − E[gi|Zi] =

k−1∑
l=0

gli − gl+1
i .

The point is after moving E[gi|Zi] to the RHS and applying an Lp norm, we can leverage the
triangle inequality, along with various momen inequalities to upper bound the RHS. After summing
over i and interchanging sums we obtain∥∥∥∥∥

n∑
i=1

gi

∥∥∥∥∥
p

≤

∥∥∥∥∥
n∑
i=1

E[gi|Zi]

∥∥∥∥∥
p

+

k−1∑
l=0

∥∥∥∥∥
n∑
i=1

gli − gl+1
i

∥∥∥∥∥
p

.

10



First, we apply bounded differences to E[gi|Zi] with conditions (1) and (2) to obtain that∥∥∥∥∥∑
i

E[gi|Zi]

∥∥∥∥∥
p

≤ 4
√
pnM.

For the other terms, under the strong or weak bounded differences property, it is tempting to
condition on S being good. This has the benefit of ensuring that further conditioning preserve
the same (uniform) bounded differences property. However, the pitfall to this approach is that
conditioning on good S ruins independence of the Zi. Since many of our moment inequalities
heavily rely on independence, this is troublesome, although plausibly there could be workarounds if
one could show that the Zi are only weakly dependent after conditioning.

Hence, we instead continue without conditioning on the good set. One outstanding concern is that
while the uniform bounded differences is immediately preserved under conditioning, the situation is
rather delicate for strong or weak bounded differences. This was the point of Lemmas 3.3 and 3.4;
to be explicit, the lemma implies that the gli are each (M, (1−

√
δ)γ +

√
δM,
√
δ) weakly difference

bounded.
We now proceed with the analysis; the first trick is to further decompose the sum over i of

gli − g
l+1
i into summing first over i ∈ Bl and subsequently over all Bl sets. The same argument as

in Bousquet et al. [3], by invoking the Marcinkiewicz-Zygmund inequality, yields∥∥∥∥∥∥
∑
i∈Bl

gli − gl+1
i

∥∥∥∥∥∥
p

≤ 3
√

2p2l

 1

2l

∑
i∈Bl

∥∥gli − gl+1
i

∥∥p
p

1/p

.

Now we are in the home stretch. By invoking lemma 3.4, we have that∥∥gli − gl+1
i

∥∥
p
≤ 2
√
p2l
(
γ + 3δ

1
8(p−1)M

)
,

and hence ∥∥∥∥∥∥
∑
i∈Bl

gli − gl+1
i

∥∥∥∥∥∥
p

≤ 6
√

2p2l(γ + 3δ
1

8(p−1)M).

The rest of the proof goes through without issue, yielding a moment bound of the form

k−1∑
l=0

∥∥∥∥∥
n∑
i=1

gli − gl+1
i

∥∥∥∥∥
p

≤ 12
√

2pn(γ + 3δ
1

8(p−1)M) log n.

Remark 3.6. We note that in the proof of theorem 3.5, the bound would be tighter for gi strongly
difference bounded, and indeed they are strongly difference bounded by lemma 3.2. However, it
does not make any difference for asymptotic effectiveness. It is interesting to compare to the case of
uniform stability, which immediately implies change-two stability and uniform bounded differences
with the same stability coefficient. Clearly, the same cannot be said for hypothesis stability, unless
one is willing to make the stronger assumption that the learning algorithm is change-two hypothesis
stable.
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We are finally ready to prove our tail bound by combining theorem 3.5 and lemmas 2.6 and 3.2.
For a desired failure probability δ2 ∈ (0, 1), the proof of lemma 2.6 simply requires us to convert the
moment bound for p = log(e/δ2). Notice also that the moment bound in theorem 3.5 deteriorates
in quality as p grows large. This is to be expected, as the moments should be more dominated by
the bad event where stability is as worse as M . Another minor technical detail is that theorem 3.5
only furnishes us with a moment bound for p ≥ 2, but in the proof of lemma 2.6 as long as
p = log(e/δ2) ≥ 2, the equivalence still holds.

Because of the sensitivity of theorem 3.5 to the size of δ2, in order to get effective bounds we will
typically require δ2 = Ω( 1

poly(n) ) and δ = exp(−Ω(n)).

Theorem 3.7 (Tighter generalization for almost everywhere stable algorithms). Suppose AS is a
(γ, δ1) strongly (resp. weakly) hypothesis stable learning algorithm, and we measure the performance
on a uniformly bounded loss function ` : H×Z → [0, L]. For any δ2 ∈ (0, 1), we have with probability
at least 1−

√
δ1 − δ2 that

|R(AS)−Remp(As)| ≤ c1(γ + δ
1

16 log(1/δ2)

1 L) log n log

(
1

δ2

)
+ c2L

√
log(1/δ2)

n
+ 2γ + 2

√
δ1L.

Proof. From lemma 3.2, we have that the gi satisfy (L, 2(1 −
√
δ1)γ + L

√
δ1,
√
δ1) weak bounded

differences. Therefore by theorem 3.5, we can bound∥∥∥∥∥
n∑
i=1

gi(Z)

∥∥∥∥∥
p

≤ 12
√

2pn(2γ + 2L
√
δ1 + 3δ

1
16(p−1)

1 L) log n+ 4
√
pnL

≤ 24
√

2pn(γ + 3δ
1

16(p−1)

1 L) log n+ 4
√
pnL

By lemma 2.6, we have that with probability at least 1− δ2:∣∣∣∣∣
n∑
i=1

gi(Z)

∣∣∣∣∣ ≤ c1(γ + δ
1

16 log(1/δ2)

1 L) log n log

(
1

δ2

)
+ c2L

√
log(1/δ2)

n
.

Finally, applying claim (1) of lemma 3.2, we have that with probability at least 1− δ
1
2
1 − δ2 that

|R(AS)−Remp(As)| ≤ c1(γ + δ
1

16 log(1/δ2)

1 L) log n log

(
1

δ2

)
+ c2L

√
log(1/δ2)

n
+ 2γ + 2

√
δ1L.

4 Applications

Having improved generalization bounds for almost everywhere stability, we discuss scenarios where
such improved generalization bounds are relevant. For uniform stability, the improvements of Feld-
man and Vondrak [4], Bousquet et al. [3] yield high probability generalization in the regime where
γ = O(1/

√
n). On the other hand, in the extensive overview of almost everywhere algorithmic

stability [6], most of the examples discussed are (0, δ) where δ is typically 1
poly(n) . For example,

the maximum margin algorithm is weakly (0, δ) hypothesis stable where δ = 2E[# support points]
n+1 .

Since our generalization bound is effective in the regime where γ = O(1/
√
n), δ = exp(−Ω(n)),

and δ2 = 1/ poly(n), it behooves us to find applications where we indeed have (strong or weak)
hypothesis stability with these settings of parameters.
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4.1 1-nearest neighbor interpolation

We describe a simple scenario where we obtain (Õ( 1√
n

), 1
poly(n) ) strong hypothesis stability. Consider

the uniform measure µ on the unit square S = [0, 1]× [0, 1] ⊂ R2. Our goal is to learn an unknown
1-Lipschitz function f : S → R, given a dataset S = {(xi, yi)}ni=1 where xi ∼ µ i.i.d and yi = f(xi).
The algorithm AS we use to learn f is 1-nearest neighbor interpolation, where AS(x) is equal to the
value of its closest neighbor; concretely, we define AS(x) = f(xj), where j = arg mini∈[n] ‖x− xi‖2.
The loss is defined to be `(AS(x), y) = |AS(x)− y|.

It is easy to verify that the nearest neighbor interpolator is not uniformly stable. For example, if
all of the training points in S are (0, f(0)), then the loss incurred on z = (1, f(1)) is `(AS(1), f(1)) =
|f(1) − f(0)| = Ω(1); however, if the perturbation is z′ = (1, f(1)), then `(ASi←z′ (1), f(1)) = 0.
Hence the uniform stability parameter is Ω(1).

This construction shows that the stability parameter can be large when our training S doesn’t
cover the unit square well. However, we hope that with high probability that S does cover the unit
square.

Consider discretizing S into a grid of k2 squares of size 1
k ×

1
k . Assume that S satisfies the

property that for each grid square, there is (xi, yi) ∈ S such that xi lies in that grid square.
For a fixed new data point z = (x, f(x)) and corruption z′, let xj = arg minx′∈S ‖x − x′‖2, and
xk = arg minx′∈Si←z′ ‖x− x′‖2. Then, the stability at point z is

|`(AS(x), f(x))− `(ASi←z′ (x), f(x))| = ||f(x)− f(xj)| − |f(x)− f(xk)||
≤ max{|f(x)− f(xj)|, |f(x)− f(xk)|}
≤ max{‖x− xj‖2, ‖x− xk‖2}

Since S contains a point in each grid square, ‖x− xj‖2 is at most the max distance between 2 points

in the same square, so ‖x− xj‖2 ≤
√

2/k. Similarly, ‖x− xk‖2 is at most the distance from x to the

second closest point in S, which must be within 2 grid squares of x and hence ‖x− xk‖2 ≤ 2
√

2/k.
Therefore the stability parameter is O( 1

k ).
We calculate the probability that each grid square contains a point in S. For a fixed grid

square, the probability that no point in S lies in it is (1− 1/k2)n ≤ exp
(
−n/k2

)
. Taking the union

bound over all grid squares tells us that the probability that a square is missing a point is at most
k2 exp

(
−n/k2

)
. Taking k2 = O( n

logn ) gives us a failure probability of 1
poly(n) ; this yields a stability

parameter of O( logn
n ). Hence the 1-nearest neighbors interpolation algorithm is (Õ( 1√

n
), 1, 1

poly(n) )

strongly hypothesis stable.

4.2 Strongly convex ERM

Following Shalev-Shwartz et al. [8], we consider the problem of solving convex ERM. We let our
hypothesis space H be a closed, convex body in a Hilbert space and D be a distribution over points
z ∈ Z. Further, let ` : H × Z → [0, L] be a ρ-Lipschitz convex loss function in H. The goal is to
find the minimizer of the population risk, i.e. to find h∗ = arg minh Ez[`(h, z)] = arg minhR(h).
Now consider a learning algorithm AS which performs ERM. In other words, AS estimates h∗ by
minimizing the empirical risk Remp(AS) = 1

n

∑n
i=1 `(h, zi) over h ∈ H.

In this setting, stability is not guaranteed unless we add a strongly convex regularizer such as
one of the form λ

2 ‖h‖
2
; this turns the objective function into one that is λ-strongly convex. For such

λ-strongly convex objective functions, Shalev-Shwartz et al. [8] prove that the learning algorithm

has uniform stability 4ρ2

λn . The choice of λ which minimizes R(h∗) − Remp(AS) is λ = Õ(1/
√
n),

hence placing us in the regime that requires stronger generalization bounds.
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We note a few difficulties in turning this into a setting where we have almost everywhere stability.
First of all, once we have convexity and ρ-Lipschitzness of `, regularization is all that is needed to
turn the problem into a strongly convex one. Since the loss function is usually predetermined, it
does not make much sense for the choice of S to affect convexity.

There are a couple workarounds we considered:

• Consider the scenario where ` is a priori convex and ρ-Lipschitz. In the proof of uniform
stability, λ-strong convexity is only used in the form

Remp(Ai←z
′

S ) ≥ Remp(AS) +
λ

2

∥∥∥Ai←z′S −AS
∥∥∥2

.

Instead of regularizing, suppose that the choice of S can also give ` (restricted) λ strong
convexity. However, since ERM is invariant to scaling of the loss function, it seems difficult to
produce a non-artificial situation where we have a strongly convex parameter that is O(1/

√
n).

We attempt to address this concern in the following bullet points.

• Let’s further investigate the notion of restricted strong convexity. In the setting of noisy matrix
completion [7], we suppose that random indices (i, j) are sampled from a matrix M and we
observe y = Mij+εij , where εij is a zero mean and finite variance noise term. We can rephrase
the data observation model as a vector operator Tn (producing n i.i.d. noisy observations). It
is known that in the setting of noisy matrix completion, that with high probability over the
noise and observed matrix entries, the observation operator Tn is nice in search directions that
are not too spiky or high rank, as measured by various matrix norms.

The point is that under the quadratic loss ‖y − Tn(M)‖22, strong convexity is governed by the
smallest eigenvalue of the Hessian T>n Tn. Hence the niceness of the observation operator implies
strong convexity in the special search directions. Unfortunately, this niceness is governed by
matrix norms which would unlikely lead to a O(1/

√
n) strong convexity parameter. One other

difficulty with adapting this setting to a stability analysis is that matrix completion does not
fit nicely into the supervised learning setting underlying algorithmic stability.

• Inspired by the Hessian lowest eigenvalue condition for quadratic loss functions, we recall that
for a N × n random matrix with i.i.d. N(0, 1) entries, the lowest singular value is

√
N −

√
n

with high probability. With n = N − d, we have

√
N −

√
n =

d√
N +

√
N − d

,

so taking d = n1/4 the lowest singular value is O(n−1/4) with high probability. If this was
the observation operator, the Hessian would thus have lowest eigenvalue O(1/

√
n) with high

probability.

• Switching gears entirely, let’s take for granted that the final ERM will be O(1)-strongly convex.
We first note that the crucial hypotheses that ` be Lipschitz and strongly convex in the
hypothesis are somewhat conflicting. Indeed, if the range of the learning algorithm, a subset
of H, is unbounded, then it cannot be the case that the loss function is both λ strongly convex
and ρ Lipschitz. Hence, another setting with almost everywhere hypothesis stability is if we
know that for most (S, z′) that hypotheses AS and ASi←z′ fall within a bounded subset of H.
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Take for example Z = R, D to be the standard normal distribution, and the loss function to
be the squared loss 1

2‖y −AS(x)‖22. By strong convexity we have

`(AS(x), y)− `(ASi←z′ (x), y) ≥ ‖AS −ASi←z′‖
(
−‖∇AS `(AS(x), y)‖∗ +

λ

2
‖AS −ASi←z′‖

)
.

Hence, to ensure this, with somewhat similar inspiration to the interpolation setting of sec-
tion 4.2, suppose the learning algorithm AS is O(1)-Lipschitz in the maximum distance between
two points of S. Since a standard normal obeys the tail bound P[x ≥ n1/4] ≤ exp(−

√
n/2), by

the union bound we obtain that the Lipschitz constant is O(n1/4) with (very) high probability,
so that overall with high probability the algorithm has stability O(1/

√
n).

5 Discussion

In this paper we strengthened generalization bounds for a relaxed notion of algorithmic stability
that only requires stability with high probability over the training set. We primarily followed the
high level strategy of Bousquet et al. [3], but the relaxation introduces several technicalities that
must be addressed for the proof to go through. Our main insights are (1) a moment bound form
of the bounded differences inequality when the bounded differences only hold with high probability
(lemma 2.7) and (2) a unified way to pass from high probability bounded differences on a function
g(A,B) to high probability bounded differences (with slightly worse parameters) on g(A,B) where
A is fixed (i.e. we condition on A).

The former is interesting because previous tail bounds for almost-everywhere stable learning al-
gorithms such as theorem 2.5 are not particularly user friendly as they are only effective in specific
regimes of the parameters. The latter, obtained by repeatedly leveraging Markov’s inequality, high-
lights the strength of uniform stability. For uniformly stable learning algorithms, point (2) comes
for free, with the exact same parameter. While it is tempting to condition on the (high proba-
bility) good event for analysis, this introduces the thorny issue of dependence between the data
points. However, taken together, (1) and (2) allow us to sidestep this thorny issue and obtain an
unconditional moment bound.

Our main result, a high probability generalization bound for hypothesis stable learning algo-
rithms, is stronger than theorem 2.5, and makes more explicit the relationship between the different
parameters for high probability hypothesis stability and generalization. In particular, it applies when
we want 1/ poly(n) guarantees on the generalization gap and the learning algorithm is O(1/

√
n) sta-

ble with failure probability exp(−Ω(n)).
Finding realistic applications for our results is no easy feat. The simple interpolation setting we

described is indicative of how we searched for applications. By placing simple generative distributions
on our data, we could identify a typical set of events. Within the typical set, the hope is that mild
assumptions can be placed on the learning algorithm which set us up for O(1/

√
n) stability. To that

end, we investigated Lipschitzness and strong convexity, both of which are crucial assumptions for
ERM to be uniformly stable.

There are still several open directions that would be interesting to pursue. Finding a compelling
and realistic application would be quite interesting; although Kutin and Niyogi [6] provide a few
applications, the situation does not appear to be as universal as one would hope. Furthermore,
despite uniform stability being a distribution-independent notion, distribution-dependence is clearly
quite important for high probability stability. For example, one application we did not study was
generalization bounds for SGD. Since SGD is a randomized algorithm (where the internal randomness
is due to the choice of training points to perform gradient updates with respect to and the stability
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coefficients associated with these updates), the generalization bound of Feldman and Vondrak [4] is
only shown w.h.p. over the internal randomness but still holds in a distribution-free manner over
the aggregate dataset S. It would be interesting to extend this to a distribution-dependent setting
where we ostensibly need to involve the weakening of uniform stability studied in this paper.

References
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