
Derandomization of undirected s-t connectivity

Ashley Chen and David Wu

July 9, 2022

1 Introduction

The undirected st-connectivity problem, denoted USTCON, asks whether or not, given as input an
undirected graph G and two vertices s and t, the two vertices have a path connecting them. The time
complexity to solve this problem is well-known to be linear with basic search algorithms such as breadth-
first search (BFS) and depth-first search (DFS). However, both of these algorithms require a linear space
complexity as well. The question then arises on whether or not it is possible to construct algorithms
with more optimized space complexity.

1.1 The Randomized Algorithm

In the second lecture of our very own 18.434 class, we discussed a randomized log-space algorithm for
this problem. This is the same algorithm as proposed by Aleliunas, Karp, Lipton, Lovász, and Rackoff
in 1979 [1]. The algorithm depends on showing that a random walk constructed by starting from any
vertex and choosing the next edge with uniform probability across all edges incident to the last vertex,
will visit all the vertices of the connected component of a graph in a polynomial number of steps. Then,
the algorithm only needs to record the name of the current vertex and a counter to keep track of the
number of steps already taken. To prove that this algorithm has a small one-sided error, we used spectral
graph theory to analyze the transition matrix and later the lazy transition matrix to deal with bipartite
graphs. We also needed to prove an upper bound for the second largest eigenvalue of the transition
matrix; a similar lemma shows up in the derandomized algorithm as well.

The existence of a randomized log-space algorithm then motivates the search for a derandomized
algorithm without increasing the space complexity. This problem serves as a case study in understanding
the relationship between space and randomness. Furthermore, studying USTCON helps to understand
the relationship between the space complexity classes, especially the open question on whether or not
RL = L, where RL is the class of problems decidable by randomized log-space algorithms with one-sided
error.

1.2 The Derandomized Algorithm

The essence of the derandomized algorithm that we will show in this paper is to make the graph more
connected so that it is easier to enumerate through a connected component’s paths. Notably, constant-
degree expander graphs have logarithmic diameter, so all of their paths can be enumerated in polynomial
time and log space. Thus we want to manipulate our graph to become a constant-degree expander.
Roughly, the algorithm to solve USTCON can be split into three stages:

1. Given any graph G, turn it into a D-regular graph where each connected component is non-
bipartite.

2. Main Transformation: Turn each connected component into an expander graph. This is done
by iteratively repeating the following two steps a logarithmic number of times:

(a) Raise the graph to some constant power; then

1

(b) Reduce the degree of the graph via a graph product with a constant-size expander.

3. Solve the s-t connectivity problem on the resulting graph

Beyond showing that this deterministic algorithm correctly solves USTCON, we need to show that
this algorithm runs in polynomial time and logarithmic space. Furthermore, we can even provide a path
from s to t given that they are connected; for a discussion on this see the paper by Omer that we followed
[3].

2 Background

In this section we aim to individually review and define the techniques and topics used for the main
transformation of the algorithm.

2.1 Graph Representations

Given a graph G = (V,E), where V is its vertex set, and E its edge set, we want a more efficient
representation of G’s connectivity. Most often, adjacency matrices are used to describe graphs. We
recall that the entry (u, v) of the adjacency matrix A of a graph G is the number of outgoing edges
from vertex u to v. We also recall that a graph G is undirected if for every outgoing edge from u to
v, there is an ingoing edge from v to u; that is, A must be symmetric. Finally, we recall that a graph G
is D-regular if each vertex has exactly D outgoing edges. In terms of A, this means that each row and
column of A sums up to D.

2.1.1 The Rotation Map

Another way of representing graphs is motivated by the inclination to index incident edges and neigh-
boring vertices of a vertex v relative to v itself. This also comes in use when describing walks, since
you can describe the vertex and edge you just came from. With this in mind, we provide the following
definition of the rotation map of a graph:

Definition 2.1. The rotation map RotG of a D-regular undirected graph G = (V,E) with |V | = N is
a mapping [N]× [D] −→ [N]× [D] such that RotG(u, i) = (v, j) if the ith edge incident to u leads to v,
and from v’s perspective, the edge is the jth edge incident to v.

Thus, the rotation map helps to keep track of the same edge that may be indexed differently according
to which vertex it is recorded with respect to, making it easy to keep track of paths. Rotation maps are
necessary in order for our algorithm to be in log-space for that reason.

Another example is that we can define the adjacency matrix A of a graph G with respect to its
rotation map, where each entry (u, v) is the magnitude of the set {(i, j) ∈ D2|RotG(u, i) = (v, j)}.

2.2 Expander Graphs and s-t Connectivity

We want to transform all input graphs into expander graphs because they have the unique property of
being both sparse and still highly connected. As a result, we can show that the diameter of the graph
can be bounded to be logarithmically long with respect to the number of vertices, and we can construct
a simple algorithm to determine s-t connectivity for constant-degree expanders. These are the main
goals of this subsection.

2.2.1 Spectral and Vertex Expansion

There are three main ways to measure the expansiveness of an expander graph: edge expansion, spectral
expansion, and vertex expansion. We will introduce spectral expansion as a way to define the expan-
siveness of the graphs we work with, but to show logarithmic diameter, we will introduce and use vertex

2

expansion. Later on, we will still use spectral expansion to analyze the expansiveness of manipulated
expander graphs, in particular the graph products of expander graphs in Section 2.4.

To define spectral expansion, we consider the normalized adjacency matrix M of a D-regular
undirected graph G, which is its adjacency matrix divided by D. In class, we also defined this as the
transition matrix of G. Since G is D-regular, we know that the vector 1N = (1, 1, . . . , 1) ∈ R is an
eigenvector of M , with an eigenvalue of 1. From our 18.434 class, we also know that all other eigenvalues
have absolute magnitude at most 1. It turns out that the eigenvalue with the second largest absolute
magnitude is a very useful metric for expansiveness, so we denote it λ(G).

Definition 2.2. A D-regular undirected graph G on N vertices such that λ(G) ≤ λ is an (N,D, λ)-
graph.

Another useful metric for spectral expansion is the spectral gap, which we describe below:

Definition 2.3. Given the normalized adjacency matrix of a graph G, the spectral gap is the difference
between its largest and second largest eigenvalues.

Since the largest eigenvalue is 1, we can rewrite the expression as 1−λ2, where λ2 is the second largest
eigenvalue. An important finding relating λ(G) to N and D of a D-regular, connected, non-bipartite
graph G that is necessary for our main derandomized algorithm is the following:

Lemma 2.4. (cf. [2]) For every D-regular, connected, non-bipartite graph G on [N], it holds that
λ(G) ≤ 1− 1

DN2 .

Next, we move on to vertex expansion:

Definition 2.5. A graph G has the property of vertex expansion if for every λ < 1 there exists ϵ > 0
such that for every (N,D, λ)-graph G and for any set S of at most half of the vertices in G, at least
(1 + ϵ) · |S| vertices of G are connected by an edge to some vertex in S. Even stronger, at least ϵ · |S| of
the vertices are outside of S.

2.2.2 s-t Connectivity

With an understanding of vertex expansion, we then can move on to providing an algorithm for solving
the third stage of the derandomized algorithm: solving the s-t connectivity problem on an expander
graph.

Lemma 2.6. Given a (N,D, λ)-graph G and two vertices s and t, there exists a path between these two
vertices of length O(logN).

Proof. We independently and iteratively apply vertex expansion to a set S and T of vertices, starting
with S = {s} and T = {t}. By Definition 2.5, we know there exists an ϵ > 0 such that either |S| > N

2

or at least (1 + ϵ) · |S| vertices of G have an edge to a vertex in S, and that either |T | > N
2 or at least

(1 + ϵ) · |T | vertices of G have an edge to a vertex in T . In the first case for S and T , we can stop. In
the second case, we take the (1 + ϵ) · |S| or (1 + ϵ) · |T | as our new S or T respectively. Since at each
step, |S| and |T | grows exponentially, we know it’ll take lS = O(log n) and lT = O(log n) applications
of vertex expansion to find two sets containing all vertices connected to s and t respectively such that
each set has more than N

2 vertices. Then by the Pigeonhole Principle, there exists a vertex v in both S
and T that has distance at most lS to s and lT to t. Thus by connecting these paths, we have a path
from s to t that has length at most lS + lT , which is O(log n).

With this, we can provide an algorithm Aexp to solve s-t connectivity for expander graphs.

Theorem 2.7. Given as input a (N,D, λ)-graph G, where D is constant, there exists an algorithm Aexp

that takes O(logD · logN) space and polynomial time such that it correctly solves the s-t connectivity
problem.

3

Proof. Since we know from Lemma 2.6 that the diameter of G is l = O(log n), we have Aexp merely
check all possible paths of length l from s. Since G is D-regular, there are at most Dl paths. If the
algorithm finds a path that ends with t or has t in it, Aexp returns that s and t are connected. Otherwise,
if Aexp finishes enumerating through all these paths without returning, then it outputs that they are not
connected.

This algorithm is correct because if s and t are connected, by Lemma 2.6 we know the length of
their path is at most l so Aexp would check that path and output connected. For the converse, it holds
because Aexp doesn’t output until it finds an explicit path connecting s and t.

For runtime analysis, we note that D is constant, so DO(logn) ends up being polynomial. For space
analysis, we note that Aexp only needs to store the current path that it’s checking, as an order for
iterating through the paths can be predetermined. Then, we keep track of each edge of the path by
indexing it from [D] relative to the vertex it is outgoing from. Thus each edge index takes O(logD)
space, and there are O(logN) edges in the path, so in total Aexp takes O(logD · logN) space.

2.3 Graph Powering

The first step of the main transformation of the derandomized algorithm aims to make a graph more
like an expander graph through the process of powering. We provide two equivalent definitions:

Definition 2.8. (Informal) The tth power of a graph G = (V,E) is a graph Gt whose vertex set is V ,
where an edge (u, v) is in its edge set if there exists a walk of length exactly t from u to v.

Definition 2.9. (With rotation maps) The tth power of a graph G = (V,E) where |V | = N and the
vertices are indexed by [N] is the graph Gt whose rotation map is given by RotGt(v0, (a1, a2, . . . , at)) =
(vt, (bt, bt−1, . . . , b1)), where these values follow the rule (vi, bi) = RotG(vi−1, ai) for 1 ≤ i ≤ t.

Intuitively, the rule mentioned by the rotation maps definition enforces that there is an edge between
all t + 1 vertices, thus a walk of exactly length t as described in the informal definition. Note that
self-loops are allowed, and if the walk from u to v is distinct, then that edge is distinct. Thus, for a
D-regular graph G, the tth power of G is a Dt-regular graph.

From our understanding of eigenvalues and adjacency matrices, we can see that the following lemma
is true:

Lemma 2.10. Given G an (N,D, λ)-graph and a constant t, Gt is an (N,Dt, λt)-graph.

2.4 Graph Products

The second step of the main transformation is meant to deal with the increased degree that is a by-
product of powering a graph. Both provided graph products use a smaller graph H and combines it
with the original graph G to maintain the size and connectivity of G but with the degree of H instead.
Furthermore, these graph products don’t hurt the expansion done by graph powering. For both, we
assume that G is a D-regular graph on N vertices, and H is a d-regular graph on D vertices, where
d < D.

2.4.1 The Replacement Product

We build the replacement product G r H as follows:

1. For each vertex v in G, replace v with a copy Hv of H, also known as a cloud. Each cloud maintains
the same edges that H has.

2. For each of the D vertices vi of each cloud Hv, add another edge from vi to a vertex in the cloud
of the ith neighbor of v in G. Do this in such a way that each vertex of a cloud only has one
neighboring vertex from a different cloud.

4

We provide an example in the image below, taken from [5].

Note that the replacement product now becomes a (d+ 1)-regular graph.

2.4.2 The Zig-Zag Graph Product

This graph product builds upon the replacement product, and is the graph product used in the main
transformation. Thus, we will also prove that the expansion of G isn’t hurt much after applying the
zig-zag graph product.

First, we build the zig-zag graph product G z H in the following way:

1. Build the replacement product G r H.

2. The set of vertices of G z H is the same as in G r H. Thus a vertex in G z H would be (u, a) where
u is in G and a in H.

3. For each vertex (u, a) within a cloud, ((u, a), (v, b)) is an edge in G z H if there exists a path
((u, a), (u, c), (v, d), (v, b)) of length 3 in the replacement product such that:

• (u, c) is a vertex in the same cloud as (u, a), and ((u, a), (u, c)) is an edge in G r H. In other
words, (a, c) is an edge in H;

5

• (v, d) is a vertex in a different cloud as (u, a) and (u, c), and ((u, c), (v, d)) is an edge in G r H;
and,

• (v, b) is a vertex in the same cloud as (v, d), and ((v, d), (v, b)) is an edge in G r H. In other
words, (d, b) is an edge in H.

Since this is the graph product that we will be using in our algorithm, we provide the formal rotation
map construction as well:

Definition 2.11. (With rotation maps) If G is a D-regular graph on [N] with rotation map RotG and
H is a d-regular graph on [D] with rotation map RotH , then their zig-zag product G z H is defined to
be the d2-regular graph on [N]× [D] whose rotation map RotG z H is as follows:

RotG z H((v, a), (i, j)) :

1. Let (a′, i′) = RotH(a, i)

2. Let (w, b′) = RotG(v, a
′)

3. Let (b, j′) = RotH(b′, j)

4. Output ((w, b), (j′, i′)).

Chaining multiple of these paths together from the informal definition makes the path look like a
zig-zag going between the different clouds, thus earning its name. [5] extends their replacement product
example to provide an example of the zigzag product, which we show below.

6

Note that each vertex in G z H has degree d2, since there are d options for the (u, x) edge, 1 option
for the (x, y) edge, and d options for the (y, v) edge.

Next we want to show that this graph product doesn’t hurt the expansion of G, which we can measure
by comparing the spectral gap as defined in Definition 2.3 of G and G z H. While the theorem provided
by [4] calculates an exact function of λ(G z H), what we really need is the following corollary, which uses
algebra from the result of the theorem to calculate the spectral gap.

Corollary 2.12. Given G a (N,D, λ)-graph and H a (D, d, α)-graph, then

1− λ(G z H) ≥ 1

2
(1− α2) · (1− λ).

3 Transformation into Expander Graphs

Definition 3.1. Let G be a D16 regular graph on N vertices and H be a D-regular graph on D16 vertices.
We define the following graph transformation T (G,H).

• Set ℓ = 2⌈log
(
DN2

)
⌉ and G0 ← G.

• For i from 1, . . . , ℓ, compute
Gi ← (Gi−1 z H)8.

The intermediate transformations Gi will be denoted as Ti(G,H), and the final transformation Gℓ is
also denoted as T (G,H).

We will argue that this transformation T possesses two crucial properties:

• It turns each connected component into an expander graph without a huge blowup in the size of
the graph. In particular, if ℓ = O(log n) then the transformed graph Gℓ has poly(n) vertices.

• The transformation can be computed in log space.

This graph transformation is precisely the required transformation to solve USTCON using Theorem 2.7,
which works for expander graphs that are connected. First, we show that T preserves connectedness of
the input G, by demonstrating that the second largest eigenvalue is bounded away from 1.

Lemma 3.2. If λ(H) ≤ 1
2 and G is a connected, non-bipartite graph, we have λ(T (G,H)) ≤ 1

2 .

Proof. From class we know that for D-regular graphs on N vertices that λ(G) ≤ 1 − 1
DN2 . Using the

fact that (1−x)2 ≤ 1− 1.5x for 0 ≤ x ≤ 0.5, we obtain that for the choice of ℓ that (1− 1
DN2)

2ℓ ≤ 1
2 . It

suffices to show then that for each i we have λ(Gi) ≤ max
{
λ(Gi−1),

1
2

}
. Using Corollary 2.12, we have

λ(Gi−1 z H) ≤ 1− 1

2

(
1− 1

4

)
· (1− λ(Gi−1)).

Since Gi = (Gi−1 z H)8, Lemma 2.10 then implies that

λ(Gi) ≤
[
1− 1− λ(Gi−1)

3

]8
.

If λ(Gi−1) < 1/2 then direct computation shows that λ(Gi) ≤ 1
2 . Otherwise we can show that (1 − 1

3 ·
(1− λ(Gi−1)))

4 ≤ λ(Gi−1), and the conclusion follows.

Next we will state and quickly give a proof sketch for a simple fact. Essentially, the transformation
T respects the connected components of G0 = G.

Fact 3.3. Let G, H be inputs to T and S be a connected component of G. Then

T (G|S , H) = T (G,H)|S×[D16]ℓ .

7

Proof sketch. The proof goes by induction. The base case is trivial. For the inductive step, we need only
unravel the definition of the zig-zag product and graph powering to complete the proof.

Lemma 3.4. Let D be a constant. If G is a D16 regular graph on N vertices and H is a D regular
graph on D16 vertices, then the transformation T (G,H) can be computed in O(logN) space.

Rather than provide a rigorous proof of the above lemma, we provide some intuition that can be
made precise with additional care. Refer to [3] for more details.

Proof sketch/intuition. When we evaluate Rot(Gi+1), we are only required to reuse evaluations of
Rot(Gi) or a constant amount of additional memory (which may also be shared across the layers of
the recursion). Another way of phrasing this is that we only need a constant size counter (which takes
O(log n) space). There are some subtleties with accounting here which we brush away for the sake of
exposition.

4 Main Algorithm

In this section we describe a deterministic algorithm for USTCON in logspace.

Theorem 4.1. USTCON ∈ L.

Proof. The crux of the algorithm, as described earlier, is to transform the input graph G into one where
each connected component is an expander. USTCON can be solved in logspace on expanders.

To do so, we want to apply the transformation T defined in Definition 3.1. But to do so, we need
the input G to be a regular graph, so we describe a subroutine for converting G (which is not necessarily
regular) into Greg, a D16 regular graph whose vertices are pairs (v, w) of vertices in G. Here, D is a
large enough constant such that we can pick H to be a (D16, D, 1

2) expander.
Stage 1 of the algorithm, as in Section 1.2, is as follows. In particular, define Rot(Greg) : ([N] ×

[N])× [D16] as follows:

• Rot(Greg)((v, w), 1) = ((v, w′), 2) where w′ = w (mod N) + 1.

• Rot(Greg)((v, w), 2) = ((v, w′), 1) where w′ = w − 1 (mod N) but w′ = N if w = 1.

• If (v, w) ∈ E then Rot(Greg)((v, w), 3) = ((w, v), 3), otherwise it equals ((v, w), 3).

• For 3 < i ≤ D16 we have Rot(Greg)((v, w), i) = ((v, w), i).

The first two bullets establish that the nodes v × [N] are connected by a cycle of length N . The third
establishes that edges only exist between (v, n) and (v′, n′) for v ̸= v′ whenever v and v′ are adjacent in
G. The last bullet are the self loops that saturate the graph to be D16 regular.

Note that each transformation only requires a reassignment of a constant number of pointers so is
logspace. We check that Rot(Greg) satisfies the requirements for Definition 3.1. Since it’s given by
a rotation map, it is in fact D16 regular. Due to the self loops, the connected components are also
non-bipartite, which is required to apply Lemma 3.2.

Now we are in stage 2 of the algorithm. We need a (D16, D, 1
2) expander H, which we can construct

explicitly (via our discussion in class) or exhaustively evaluated (since the search space is small enough).
Next, we define Gexp ≜ T (Greg, H). We need to check that Gexp satisfies the hypotheses for the easy
algorithm on expander graphs.

Let S be the connected component that s belongs to. We argue that the corresponding part of Gexp,

defined as Sexp ≜ S × [N] × [D16]ℓ, is a connected component in Gexp. First, we show that Sexp is
disconnected from the rest of Gexp; this demonstrates that it is a union of connected components.

To see this, we first establish that Sreg ≜ S × [N] is a connected component of Greg. Each vertex
v ∈ G induces a set of vertices v× [N] in Greg, which are all connected by the cycle. On the other hand,
the construction respects the connectedness of S. So indeed S × [N] is a connected component of Greg.

8

Next, we can apply Fact 3.3 with G = Greg and S = Sreg to conclude that Sexp is disconnected from
the rest of Gexp. Finally, we apply Lemma 3.2 to see that λ(Gexp|Sexp) ≤ 1

2 , i.e. Sexp is connected.
Hence the claim is proved.

From here, we are in Stage 3 of the algorithm. We invoke the algorithm Aexp from Theorem 2.7 as a
subroutine, on nodes s′ = (s, 1ℓ+1) and t′ = (t, 1ℓ+1) in Gexp. Our algorithm A outputs the same output
as Aexp.

To argue that the algorithm is indeed logspace, it suffices to argue that it is comprised of a constant
number of logspace subroutines. In particular,

• The transformation from G to Greg is logspace as argued earlier.

• The transformation of Greg to Gexp is logspace due to Lemma 3.4.

• The algorithm Aexp runs in logspace due to Theorem 2.7

Now, for correctness, since Gexp is a valid input to Aexp, it suffices to show that s′ and t′ live in the
same connected component in Gexp. Indeed, in G, s and t both belong to S, so both belong to X as
defined above. Thus we have provided a logspace algorithm for USTCON.

References

[1] Romas Aleliunas, Richard M Karp, Richard J Lipton, László Lovász, and Charles Rackoff. Random
walks, universal traversal sequences, and the complexity of maze problems. In 20th Annual Sym-
posium on Foundations of Computer Science (sfcs 1979), pages 218–223. IEEE Computer Society,
1979.

[2] Noga Alon and Benny Sudakov. Bipartite subgraphs and the smallest eigenvalue. Combinatorics,
Probability and Computing, 9(1):1–12, 2000.

[3] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), sep 2008.

[4] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product, and
new constant-degree expanders and extractors. In Proceedings 41st Annual Symposium on Founda-
tions of Computer Science, pages 3–13. IEEE, 2000.

[5] Luca Trevisan. Cs359g lecture 17: The zig-zag product, 2011. Last accessed 5 December 2021.

9

	Introduction
	The Randomized Algorithm
	The Derandomized Algorithm

	Background
	Graph Representations
	The Rotation Map

	Expander Graphs and s-t Connectivity
	Spectral and Vertex Expansion
	s-t Connectivity

	Graph Powering
	Graph Products
	The Replacement Product
	The Zig-Zag Graph Product

	Transformation into Expander Graphs
	Main Algorithm

