
Subquadratic Edit Distance Approximations

Ashley Lin, James Lin, David Wu
ashlin@mit.edu, jameslin@mit.edu, dxwu@mit.edu

May 26, 2021

Abstract

Edit distance is a common measure for the similarity of two strings, counting the minimum
number of insertions, deletions, and substitutions required to transform one string into the other. A
straightforward dynamic program can compute edit distance in quadratic time, but strong hardness
bounds have been proven against the existence of a subquadratic time solution. In lieu of this, in
this paper we focus on approximations of edit distances in subquadratic time. we first describe
the breakthrough work of Chakraborty et al. [6], which develops the first truly subquadratic time
algorithm approximating edit distance to a constant factor, and then the related work of Boroujeni
et. al [5], which improves the approximation factor to 1 + o(1) in a smoothed setting.

1 Introduction

A common problem in computer science is measuring the “similarity” between two long strings, for some
definition of similarity. For instance, in computational biology, DNA and protein sequences are com-
pared to identify similar regions, giving insight into evolutionary and structural relationships. Further
applications include speech recognition, information extraction, and machine translation.

In this paper, we focus on edit distance (also Levenhstein distance), written ed(s, s′), between two
strings s and s′, which measures the least number of insertions, deletions, or substitutions required to
modify a string s to s′. This is also related to the well-known Longest Common Subsequence (LCS)
problem, which measures the length of the longest (not necessarily contiguous) subsequence LCS(s, s′)
between two strings. In fact, computing the LCS is equivalent to computing the modified edit distance
ed′(s, s′) with no substitutions, due to the fact that ed′(s, s′) = |s|+ |s′| − LCS(s, s′) [1].

Assuming the two strings both have length n, then the edit distance can be computed deterministi-
cally in quadratic time with dynamic programming, as seen in Figure 1.

For 0 ≤ i ≤ n :

T [0][i] = T [i][0] = i

For i, j ≥ 1 :

T [i][j] = min

 T [i− 1][j] + 1
T [i][j − 1] + 1
T [i− 1][j − 1] + 1s[i] 6=s′[j]

The edit distance is the value of T [n][n].

* 8 8 7 6 6 6 6 6 5
* 7 7 6 5 5 5 5 5 4
R 6 6 5 4 4 4 4 4 3
E 5 5 4 3 3 3 4 3 4
T 4 4 3 2 2 3 3 4 5
S 3 3 2 1 2 3 4 5 6
I 2 2 1 2 3 4 5 6 7
M 1 1 2 3 4 5 6 7 8
@ 0 1 2 3 4 5 6 7 8

@ D I S A S T E R

Figure 1: On the left is the recursive definition of the dynamic programming solution, where s[i]
denotes the ith character of s (one-indexed). A visualization is on the right for the words DISASTER

and MISTER, after adding a new symbol ‘*’ to ensure both words have the same length of 8.

1

mailto: ashlin@mit.edu
mailto: jameslin@mit.edu
mailto: dxwu@mit.edu

Landau et al. [7] present a deterministic algorithm which improves on the O(n2) runtime for small
solution sizes — specifically, their algorithm runs in time O(n+ ed(s, s′)2). This algorithm is used as a
subroutine for both of the algorithms we survey in the paper, but since the algorithm is deterministic
and quite complex, we will black box it.

Backurs and Indyk [3] proved that a truly sub-quadratic algorithm (meaning a runtime of (O(n2−δ)
for some δ > 0, and not just subquadratic by polylog factors) would imply a 2(1−γ)n runtime algorithm
for k-SAT for some γ > 0, contradicting the Strong Exponential Time Hypothesis (SETH). Although
SETH is believed to be true, it will certainly not be proven anytime soon – it is a stronger version of the
Exponential Time Hypothesis that k-SAT runs in exponential time, which is itself stronger than the still
unproven P 6= NP that says k-SAT does not run in polynomial time. In fact, Abboud et al. [2] proved
that even the easier task of shaving arbitrarily many polylog factors from the θ(n2) runtime would imply
the unproven result that NEXP does not have uniform NC1 circuits.

Of course, in the absence of more efficient exact algorithms, we are also interested in fast approxima-
tion algorithms of edit distance. For example, the aforementioned algorithm due to Landau achieves a√
n-approximation in linear time, but fails to achieve a constant approximation in subquadratic time. In

Section 3, we describe the first subquadratic time algorithm in 2019 due to Chakraborty et al. [6] that
is able to approximate edit distance to within a constant factor, which has been improved to a factor
3 + ε [4]. Finally, in Section 4, we describe how this is improved to a 1 + o(1) approximation algorithm
by Boroujeni et al. [5] assuming a relatively mild extra condition on the initial strings s and s′.

2 High-Level Overview

We begin with a high-level overview covering both the algorithms presented in [6] and [5], as they rely
on a similar framework. For simplicity, we assume that the input strings s and s′ have the same length
n, for n a power of two, by padding a new symbol at the end of the strings as necessary, though both
algorithms can be generalized to remove this assumption. In both cases we preprocess by using Landau’s
deterministic algorithm [7] to find asymptotically small solutions (of size n4/5 in [2] and n37/39 in [5]) if
they exist.

We can view the dynamic programming solution from Figure 1 as a path finding algorithm where the
cost of horizontal and vertical edges is always 1, and the cost of diagonal edges depends on whether the
characters at the corresponding indices in the strings match. From our preprocessing, we know that not
too many diagonal edges have cost 0. The primary intuition is that in an approximation algorithm, we
can find “approximate” diagonal edges across larger regions of the graph which upper bound the true
cost of traversing that region.

More formally, we break up each string into substrings, which we call windows. Further, we consider
the intersection of a window w in s (along the horizontal axis) and a window w′ in s′ (along the vertical
axis) to define a box, and attempt to approximate the solution to the subproblem ed(w,w′) for each
box we consider. Since we only want an approximate solution for each box, we can discretize our search
space – in particular, for an approximation factor of 1 + ε, it is sufficient to find all boxes for which
the edit distance is at most the threshold (1 + ε)k for increasing integers k. To do so efficiently, we use
sparsification; essentially, for each value of k we make a distinction between windows w from s which
correspond to many boxes within the threshold edit distance, and windows in s which are not. In [6]
this distinction is called dense versus sparse, while in [5] this distinction is called high degree versus low
degree. In either case, we improve our runtime by doing less work for each window which is dense, and
considering “larger” windows for windows which are sparse. Together, these optimizations allow us to
solve all the needed subproblems in subquadratic time.

Then the number of boxes we approximate is subquadratic, so we can run a modified dynamic
program over these edges to obtain a subquadratic algorithm overall. In fact, this runtime can be
improved (with a tradeoff in the approximation factor) by recursively running the same algorithm as a
subprocess when solving the subproblem of finding the edit distance between windows.

2

3 Approximating Edit Distance to a Constant Factor

The main result of [6] is a randomized algorithm to compute the edit distance ed(s, s′) up to a factor of
1680 in Õ(n12/7) time when ed(s, s′) ≥ n4/5. More specifically, this is stated as the following theorem:

Theorem 3.1. For every θ ≥ n−1/5, there is a randomized algorithm with runtime Õ(n2−2/7θ4/7) that
takes two strings s and s′ for which ed(s, s′) ≤ θn, and outputs a number u such that u ≤ 840θn with
probability at least 1− n−7.

By taking θ = 2−i with i ∈ {0, 1, . . . , logn
5 }, this implies that if the edit distance satisfies ed(s, s′) ≥

n4/5, then we have a randomized subquadratic algorithm that can determine the edit distance within a
factor of 2 · 840 = 1680. This provides a subquadratic runtime when combined with Landau’s algorithm
(which we recall runs in O(n+ ed(s, s′)2) time) in the case when ed(s, s′) ≤ n4/5.

We adapt the grid setting for the problem from the dynamic programming solution in Section 1 –
namely, we place s on the horizontal axis and s′ on the vertical axis. We can then consider the graph
as seen on the left side of Figure 2, where gray edges have weight 1 and red edges have weight 0, and
we wish to find the minimal source-sink path τ from the bottom left corner with vertex (0, 0) to the top
right corner at vertex (n, n).

3.1 An Overview of the Covering Algorithm

As specified in section 2, we split s and s′ into windows so that we can focus on smaller boxes as
subproblems. The key is to find a sequence of boxes that “approximate” the minimal path τ (as seen in
Figure 3) in subquadratic time, known as the covering algorithm. We then quickly compute a path that
is a constant factor approximation of the edit distance for each of those boxes. Then, the approximated
path formed by stitching together these subpaths with vertical segments (shown as the blue line in Figure
3) gives a constant approximation of the edit distance of τ . With more care, this approximate path can
be improved via a more complex construction that we choose to omit.

@

@

D

M

I

I

S

S

A

T

S

E

T

R

E

*

R

*

= wt 1

= wt 0

@

@

D

M

I

I

S

S

A

T

S

E

T

R

E

*

R

*

Figure 2: On the left, one minimal path τ is circled in green, giving the edit distance of 5 as seen in
Figure 1. This is formed by substituting the ‘D’ in “DISASTER” into an ‘M’, deleting the substring

“AS”, and then inserting the new symbols “**” to the end. On the right, example boxes are shown in
the case when n = 8, w1 = 4, and θ = 1/2.

The first step is to divide the grid into (overlapping) boxes. We partition s into ` = n/w1 non-
overlapping windows s1, . . . , s` of size w1. For some θ < 1, we also divide s′ into `/θ = n/(θw1)
overlapping windows s′1, . . . , s

′
`/θ of size w1 – each with bottom and top edges aligned at multiples of

θw1 (see Figure 2). A box is then of the form si × s′ji . To be more explicit about what we mean by an
“approximate” sequence of these boxes, we first need a few definitions:

3

Definition 3.2. Let si × s′ji be a box with side length w1, and let κ be an upper bound on the box’s edit
distance ed(si, s

′
ji

). Then (si× s′ji , κ) is a certified box. Furthermore, if κ ≤ c ed(si, s
′
ji

) for a constant
c, then say that si × s′ji is certified within a factor of c.

Now, we describe the “approximate” sequence consisting of these certified boxes:

Definition 3.3. An adequate approximating sequence is a sequence of certified boxes (s1×s′j1 , κ1), (s2×
s′j2 , κ2), . . . , (s` × s′j` , κ`) such that

• si × s′ji is an adequate cover of τsi , the minimal subpath of τ in window si. This means that
the vertical distance from the start (resp. end) vertex of τsi and the bottom left (resp. top right)
corner of τsi is at most c1(cost(τsi) + θw1) for some constant c1 (see Figure 3). Here, cost(τsi) is
just the sum of the edge weights along τsi .

• The sequence of boxes si×s′ji is adequately bounded, so that
∑
i κi ≤ c2(ed(s, s′) +θn) for some

constant c2.

Note that both c1 and c2 are fixed over all θ and possible strings s, s′.

Then this will give an approximating path of length at most (2c1 + c2)(ed(s, s′) + θn). Given inputs
s and s′ for which ed(s, s′) ≤ θn, then this approximation path has length at most 2(2c1 + c2)θn. By
testing θ ∈ 2−i for i ∈ {0, 1, . . . , log n}, this gives a 4(2c1 + c2)-approximation of edit distance.

w1w2

τ

si

τsi

vert

dist

vert

dist

Figure 3: On the left is an adequate approximating sequence, with the approximating path formed by
stitching together paths of certified boxes with vertical segments. In addition to boxes of side length
w1, there are boxes of side length w2 which are introduced in Subsection 3.3. On the right, a certified

box si× s′j is in the window si, along with the minimal subpath τsi . The “height” of τsi is O(cost(τsi)),
hence why the vertical distances in the definition of an adequate cover are allowed to be O(cost(τsi)).

It can be shown that for a sufficient choice of c1, then for each horizontal window si there is a vertical
window s′ji for which si× s′ji is an adequate cover of si. Naively, we could compute the edit distances of

each si× s′ji box, which can be done via the deterministic dynamic program in O(w2
1) time. There are a

total of n
w1
· n
θw1

boxes, which gives a total of O(n
2

θ) computations, which is even worse than quadratic

4

runtime. So we need to reduce the amount of work we are doing, and here is where we take advantage
of the fact that we are considering smaller boxes. Recall that we do not necessarily need to compute the
exact ed(si, s

′
ji

) of each box, but we just need to certify each box within a factor of c for some constant
c fixed over all possible boxes, θ, and input strings. So there are two ways to reduce the runtime:

• Reducing the amortized runtime to certify boxes to o(w2
1).

• Reducing the number of boxes that need to be certified to o
(

n2

θ(w1)2

)
.

It turns out that it’s not always possible for either of these two methods to cover all possible inputs s
and s′. The insight is that we can use a combination of these two ideas to efficiently certify an adequate
cover si × s′ji for each i.

3.2 Reducing Amortized Runtime of Certifying Boxes

We rely on the fact that edit distance satisfies the triangle inequality :

Lemma 3.4 (Triangle Inequality of Edit Distance). For any strings s1, s2, and s3, we have that

ed(s1, s3) ≤ ed(s1, s2) + ed(s2, s3).

Note that for any box si × s′j , it’s true that ed(si, s
′
j) ≤ w1. We then will proceed to certify boxes

in iterations. In the kth iteration, if ed(si, s
′
j) ≤ εk where εk = w12−k for some 1 ≤ j ≤ `/θ and

k ∈ {0, 1, . . . , logw1}, then we will show that we can certify the box (si × s′j , 5εk). Over all k iterations,
this determine the adequate cover for si with c1 = 10 for all i. This procedure can be done in a way that
can significantly decrease the amortized runtime to certify boxes, and is outlined explicitly in Algorithm
1. We first introduce a few definitions that will be useful in introducing the algorithm.

Definition 3.5. Given a string z of length w1, let T (z, ρ) denote the set of windows si of s for which
ed(z, si) ≤ ρ. Similarly, let T ′(z, ρ) denote the set of windows s′j of s′ for which ed(z, s′j) ≤ ρ.

Definition 3.6. Given a fixed εk, say that a window si is d-dense if |T ′(si, εk)| ≥ d. Otherwise, say
that si is d-sparse.

Now we present the algorithm to efficiently certify boxes:

Algorithm 1: Efficiently Certifying Boxes

Result: Given a fixed εk, be able to certify a box si × s′ji that is an adequate cover, for all
1 ≤ i ≤ `.

Initialization: All windows si are unfulfilled for 1 ≤ i ≤ `;
while There exists at least one unfulfilled window si do

Choose an unfulfilled window si to be the pivot ;
for 1 ≤ i0 ≤ ` do

Compute ed(si, si0) to find T (si, 2εk);
end
for 1 ≤ j ≤ `/θ do

Compute ed(si, s
′
j) to find T ′(si, 3εk);

end
for si0 ∈ T (si, 2εk) do

for s′j ∈ T ′(si, 3εk) do
Certify each box si0 × s′j as (si0 × s′j , 5ε);

end

end
for si0 ∈ Si do

Mark si0 as fulfilled;
end

end

5

We now verify Algorithm 1. Given a pivot si and any (possibly the same) window si0 in T (si, 2εk), we
consider the set T ′(si, 3εk). By the triangle inequality (Lemma 3.4), T ′(si0 , εk) ⊂ T ′(si, 3εk) since for any
s′j in T ′(si0 , εk), we have 3εk = 2εk+εk ≥ ed(si, si0)+ed(si0 , s

′
j) ≥ ed(si, s

′
j). Furthermore, T ′(si, 3εk) ⊂

T ′(si0 , 5εk) since for any s′j in T ′(si, 3εk), 5εk = 2εk + 3εk ≥ ed(si0 , si) + ed(si, s
′
j) ≥ ed(si0 , s

′
j). So

T ′(si0 , εk) ⊂ T ′(si, 3εk) ⊂ T ′(si0 , 5εk), which shows that all the boxes si0 × s′j with ed(si0 , sj) ≤ εk is
certified as (si0 × s′j , 5εk) in Algorithm 1.

Lemma 3.7. Let d be such that all windows si of the string s are d-dense. Then Algorithm 1 will run

in O(n
2

dθ2) time. In particular, if d = ω(θ−2), then this is subquadratic time.

Proof. For each iteration of the while loop, after a pivot si is selected, the runtime is O(w2
1 · n

θw1
) =

O(nw1

θ), dominated by the time to compute the edit distance of all the boxes in window si. Now, since
given any two pivots si1 and si2 , we have ed(si1 , si2) ≥ 2εk by necessity, so it follows that the sets
T ′(si1 , εk) and T ′(si2 , εk) of the windows of s′ are disjoint. Since there are a total of n/(θw1) windows of

s′, there are at most n/(dw1θ) pivots, for a total runtime of O(nw1

θ ·
n

θw1d
) = O(n

2

dθ2) time, as desired.

We can iteratively run Algorithm 1 in logw1 + 1 rounds for εk over all k = 0, 1, . . . , logw1. For each
window si, we choose a box si×s′j that is certified in iteration ki such that no other box in si’s window was
certified in an iteration after ki. Then these boxes (si, s

′
j) produces an adequate approximating sequence

of certified boxes (where we omit the computations to show that the sequence is adequately bounded),

and given that all windows are d-dense over all iterations k, then Algorithm 1 runs in O(n
2 logn
θ2d) time,

which is subquadratic given the right choice of parameters for d and θ. Unfortunately, the fact that si is
d-dense for all windows si and over all of our iterations k is simply not true. For example, for iterations
of large k where εk is small, this can fail to hold for all windows si. So while running Algorithm 1, if we
encounter a pivot si that is d-dense, then we may proceed as described in the algorithm. But when si
is d-sparse, then we will actually edit Algorithm 1 to use the diagonal extension algorithm as described
in the next subsection. This will reduce the work in certifying boxes by reducing the number of boxes
that need to be certified instead of reducing the amortized runtime of certifying boxes, thus allowing the
algorithm to run in subquadratic time when again given the right choice of parameters.

One issue is that we need to be able to determine if a pivot si is d-dense or d-sparse for a given εk
before computing the ed(si, s

′
j) for all windows s′j of s′, since for a d-sparse pivot, computing n/(θw1)

edit distances in O(nw1/θ) time certifies more boxes and takes longer than what we will allow for
the diagonal extension algorithm. This is where the power of randomized algorithms come in – more
specifically, we will randomly sample windows s′j of s′, and use that to estimate |T ′(si, εk)|. We wish to

test if |T ′(si, εk)| ≥ d, that is, if a d
n/(θw1) = θw1d

n fraction of the windows s′j of s′ satisfy ed(si, s
′
j) ≤ εk.

To allow for sampling error, we will say a pivot is declared dense if at least p = θw1d
2n of the sampled

s′j satisfy ed(si, s
′
j) ≤ εk, and otherwise the pivot is declared sparse. Then we require θ(1

p) = θ(n
θw1d

)

samples so that with high probability, all d-dense pivots are declared dense, and that all d/4-sparse
pivots are declared sparse. So for declared dense pivots, we run Algorithm 1 as is, and over all such
iterations the total runtime will be subquadratic with the correct parameters. For all declared sparse
pivots, we will instead run the diagonal extension algorithm which can run in subquadratic time as well.

3.3 Reducing Number of Boxes to be Certified for Sparse Pivots

We now decrease the runtime by considering large boxes of side length w2 > w1/θ, and now refer to boxes
of side length w1 as small boxes. We now partition s into n/w2 non-overlapping windows t1, . . . , tn/w2

of size w2, and also divide s′ into n/(θw2) overlapping windows t′1, . . . , t
′
n/(θw2) of size w2, with both top

and bottom edges at multiples of θw2. These are referred to as large windows, and windows of length
w1 are small windows. We redefine Definition 3.2 to allow for certifying large boxes ti × t′j . Definition
3.3 is adjusted accordingly, so an adequate approximating sequence is now a sequence of small and large
certified boxes, and ti × t′j is an adequate cover of the minimal subpath τti of τ in a large window ti if
the corresponding vertical distances are at most c1(cost(τti) + θw2) for some constant c1.

6

We will be able to bootstrap certifying a small box into certifying a large box. More explicitly, we
define the diagonal extension of a small box si × s′j to a large box ti × t′j which contains the small box:

Definition 3.8. Let si × s′j be a small box, and ti be a large window of s such that si is a substring of
ti. Then the large box ti × t′j is the diagonal extension of si × s′j if the main diagonal of si × s′j is a
subsegment of the main diagonal of ti × t′j (see Figure 4).

w1

w2

Figure 4: The diagonal extension of a box si × s′j to a box in the window ti.

Note that there may be issues with the definition of a diagonal extension of a box si × s′j near the
bottom and top of the grid that we choose to ignore for the sake of simplicity. We are now ready to
introduce the Diagonal Extension Algorithm:

Algorithm 2: Diagonal Extension Algorithm

Result: Given a declared sparse small window si, let ti be the large window of s for which si is
a substring of ti. We find the diagonal extension of some small box si0 × s′j0 (possibly
not in the window si) inside the large window ti which gives a certified large box
ti × t′j that is an adequate cover of τti , the minimal subpath of τ in ti.

Initialization: A declared sparse small window si inside a large window ti;
For some constant c, randomly choose c(log n)2 windows si1 , . . . , sic(logn)2

among the w2/w1

small windows within ti;
for 1 ≤ ix ≤ c(log n)2 do

for 1 ≤ s′j ≤ `/θ do
Compute ed(six , s

′
j);

end
Store the set Jix of small windows s′j of s′ which give the d smallest edit distances among

ed(six , s
′
j) for this fixed ix;

end
for 1 ≤ ix ≤ c(log n)2 do

foreach window s′jix of Jix do
Compute the edit distance of the diagonal extension ti × t′j of each small box six × s′jix ,

and certify these large boxes with the exact edit distance;

end

end
One of the large boxes ti × t′j of the c(log n)2 · d diagonal extensions computed serves as the

adequate cover of ti with high probability;

We omit the complex analysis and proof of correctness of Algorithm 2, instead opting to provide the
high level intuition of why it should work. Recall that |T ′(si, εk)| ≤ d is almost certainly true when si
is declared sparse. If the certified large boxes produced from Algorithm 2 do not produce an adequate
cover, then this means that all of the large boxes ti × t′j are far from the subpath τti of τ . This means

7

that the cd(log n)2 small boxes si × s′j whose diagonal extensions form these large boxes are likely to
have relatively low edit distance, while still being far from the subpath τsi within the small window si.
Here lies the strength of si being declared sparse – there are few small boxes in si with low edit distance
(as |T ′(si, εk)| ≤ d), and these should tend to lie close to τsi .

Finally, we analyze the runtime of Algorithm 2. Across the c(log n)2 small windows of s, it takes
Õ(w2

1 · n
θw1

) = Õ(nw1

θ) time to compute the edit distances of all small boxes within those windows. It

takes Õ(dw2
2) time to do the large box edit distance computations on the diagonal extensions. Algorithm

2 may be run up to n/w2 times, one for each large window of s, for a total runtime for declared sparse
pivots of Õ(n2 w1

θw2
+ ndw2). Again, with suitable parameters, this is subquadratic. For the right choice

of θ, picking w1 = θ−2/7n1/7, w2 = θ1/7n3/7, and d = θ3/7n2/7 will balance the runtimes of Algorithm 1
for declared dense pivots and Algorithm 2 for declared sparse pivots so that the runtime of the overall
Covering Algorithm is Õ(n12/7θ4/7), as mentioned previously in Theorem 3.1.

4 Better Approximation Ratio in a Smoothed Setting

While there have been significant advances in constant factor approximation ratios up to (3 + ε) [4], it is
considered unlikely that a triangle inequality based approach would beat a 2-approximation. As a step
towards a better approximation ratio, Boroujeni et al. [5] analyze the following smoothed setting, i.e.
a setting between average and worst case analysis. We first describe this smoothed setting, then give
intuition for why these assumptions make the approximation task easier.

In our discussion of the edit distance problem so far, we require two input strings s, s′. In the
smoothed setting, the adversary first chooses a string s̃. This string is randomly permuted, forming the
first input string s. The adversary can then observe the smoothed output s and construct the second
input s′. To see why this is harder than the average case analysis, i.e. when both input strings are
generated uniformly from the alphabet, we show that this smoothed setting gives upper bounds on the
edit distance for worst case inputs. In particular, for a worst case input (t, t′), if the adversary sets s̃ = t,
then s will be a permuted version of t. Then we can permute t′ in the same way, and ed(t, t′) will give
an upper bound on ed(s, s′).

Intuitively, we are introducing a limited amount of randomness in the input. This helps our analysis
due to the meta-principle that random variables concentrate around their expectation. To that end,
consider the following construction of a new random string s̄. Take the empirical distribution p̂s(·) of
characters in s, i.e. for σ ∈ Σ we have

p̂s(σ) =
1

n

n∑
i=1

1si=σ.

We sample n i.i.d. characters from this empirical distribution, i.e. s̄ ∼ p̂ns . This random string s̄ is
more convenient for analysis. In particular, the strategy is to instead study the edit distance problem
for ed(s̄, s′), and then show that we can bootstrap this analysis for the original s. We omit the details
of this reduction, but the high level idea is that with high probability the frequencies of characters in s̄
and s are not too different.

In this simpler random setting, we can prove tight concentration properties about ed(s̄, s′). To
formalize this intuition, we note that edit distance changes by at most 1 when we change one character
in the input strings. By standard concentration inequalities (which we omit), we can derive the following
lemma:

Lemma 4.1 (Concentration of edit distance). For arbitrary c, we have

P[|ed(s̄, s′)− Es̄[ed(s̄, s′)]| ≥ c] ≤ 2 exp

(
−2c2

|s̄|

)
.

It is this property which is exploited to detect sparsity gaps in the window graph defined in Section 4.2.

8

4.1 Discretization Techniques

In order to achieve a 1 + o(1) approximation ratio rather than a constant factor approximation ratio,
our algorithm will be able to obtain a 1+ ε approximation ratio, and we can e.g. take ε = 1/ log n. Since
our final algorithm will be polynomial in 1/ε, this only changes the runtime by a polylog factor, which
is negligible if our goal is a truly subquadratic algorithm.

To that end, we discretize our search space into integral powers of (1 + ε). Then we will prove that
our algorithm can detect in which interval [(1 + ε)k, (1 + ε)k+1) the answer lies in, thus implying that
our answer will be at most 1 + ε off the true answer.

4.2 Windows and the Window Graph

Similar to the algorithm outlined in Section 3, the algorithm of Boroujeni et al. [5] attempts to solve
the edit distance problems for smaller subproblems (windows). A window simply represents a substring
of one of the input strings s, s′. We follow the notational convention that unprimed windows w are
substrings of s and primed windows w′ are substrings of s′. The algorithm breaks up the strings into
two sets of windows Ws, Ws′ . Although the windows can overlap, it is helpful for intuition to assume
windows are disjoint; this distinction is only relevant for some technical portions of the algorithm which
we omit.

A key object to analyze for the algorithm is a window graph with threshold ξ. A window graph is
simply a bipartite graph separated into parts Ws,Ws′ whose nodes represent windows. Formally, the
window graph Gξ satisfies the property that (wi, w

′
j) is an edge if and only if ed(wi, w

′
j) ≥ ξ. At a high

level, for an approximation ratio of 1 + ε (here ε > 0 does not have to be constant) we will sweep out
thresholds ξ as powers of (1 + ε). Eventually, we will run a gap detecting algorithm which works by
random sampling. For each ξ, we will detect if the graph is particularly sparse or not. Depending on
the outcome, we will be able to leave behind a negligible fraction of edges, thus sparsifying the graph
(with high probability).

More specifically, we have the following lemma, a simplified variant of Lemma 2.7 in [5]. To set it
up, we consider window sets W̄ and W ′, where each window (viewed as a string) is constructed by the
process described in Section 4. In particular, the windows W ′ are adversarial, whereas W̄ consists of
n/m windows of size m, with each window w̄ ∈ W̄ constructed by independently sampling m characters
from the empirical distribution of s. Note that the windows in W̄ are not actually substrings of s̄.

Lemma 4.2. Let W̄ ,W ′ be constructed as above. For ε > 0, an edit distance threshold nτ and violator
threshold nκ (under some technical conditions on ε, τ , and κ), with high probability, one of the two
events holds:

• We have ed(w̄, w′) ≥ (1 + ε)nτ for at most nκ many random windows w̄.

• We have ed(w̄, w′) ≤ nτ/(1 + ε) for at most nκ many random windows w̄.

Proof sketch. Denote n′ = |w′|. We consider the set Σn
′
, the set of all strings of length n′ formed by

characters in Σ. These represent all possible adversarial windows that could be formed. We partition
Σn
′

into two sets L and R, based on whether the expected edit distance is small or not (with respect to
the randomness of windows in W̄). In particular, string ` ∈ L if

Ew̄[ed(`, w̄)] ≤ nτ .

Here, w̄ is a random string sampled from the empirical distribution as outlined earlier. The key is
that as these strings ` are on average not too far from w̄, they are unlikely in aggregate to be far from
any w̄ ∈ W̄ . To that end, Lemma 4.1 implies that if ` is uniformly drawn from L, we have

P[ed(`, w̄) > (1 + ε)nτ] ≤ exp

(
−2n2τ ε2

m

)
. (1)

Now we are in the home stretch. The idea is to define for ` randomly picked from L the bad event
E`, which occurs whenever there are more than nn/m windows w̄ ∈ W̄ such that ed(`, w̄) > (1 + ε)nτ .

9

But P[E`] can be bounded by a combination of Equation (1) and the union bound. There are at most

nmn
n/m

ways to pick nn/m strings of size m, and by independence we can multiply failure probabilities.
So we have by the union bound that

P[E`] ≤ nmn
n/m

exp

(
2ε2nn/m+2τ

m

)
.

Finally, for sufficiently large n, there are at most nn
′

strings of length n′, so |L| ≤ nn
′
. With some

parameter tuning, we can show that |L| · P[E`] = o(1), and conclude that event E` fails for at most nκ

choices of ` with high probability.

This lemma and the proof thereof motivates the following definitions.

Definition 4.3. A window w′ ∈Ws′ is high degree with respect to threshold ξ and window size λ if the
edit distance between w′ and almost all windows w ∈Ws of size λ are at most ξ(1 + ε). Similarly, w′ is
low degree if the edit distance between w′ and almost all windows w ∈Ws of size λ is more than ξ

1+ε .

Lemma 4.2 implies that with high probability, almost all windows are either high degree or low
degree for any ξ. This allows us to exhaustively search through the possible thresholds, as detailed by
the discretization technique described in Section 4.1.

4.3 Putting the Pieces Together

We now go over the actual algorithm, going into slightly more detail than the meta level algorithm. We
also highlight the differences between this algorithm and the algorithm described in previous sections.
First, we explain the main parameters of the algorithm; in Section 4.4 we optimize the runtime as a
function of these parameters.

• Two size parameters x′ < x, both in the interval (0, 1). Here, x controls the size of the windows
and the number of windows. The parameter x′ is used for the subroutine to handle low degree
windows.

• A threshold 0 < δ < 1, which dictates when we use Landau et al’s algorithm as described in
Section 1, which runs in O(n + n2δ). When the solution size is small, we use this algorithm to
compute the solution exactly. Hence our algorithm only needs to handle large solution sizes. For
the optimal runtime, then, we expect δ ≈ 1.

• The parameter ε controls the approximation ratio, which is 1 +O(ε). As described in Section 4.1,
we take ε = 1/ log n, so that we get a 1 + o(1) approximation ratio. Also, since the runtimes of
the various subroutines only hide polylog factors of ε, they do not affect our ultimate polynomial
upperbound runtime.

With this notation in mind, we can describe the algorithm. Throughout the description of the
algorithm, we omit most of the exact runtime statements, as they are rather heavy in notation.

1. The first step is to precondition the algorithm by deterministically constructing windows forWs and
Ws′ which satisfy several nice properties. We omit the rather involved details of the construction,
which may be found in [4]. The most important are:

(1) An exact solution to edit distance between the windows Ws and Ws′ implies a truly sub-
quadratic 1 +O(ε) approximation of ed(s, s′).

(2) There are not too many total windows. More precisely, there are Õε(n
x+(1−δ)) windows.

Since we expect δ ≈ 1 in the optimal solution, this is sublinear in n.

(3) The minimum and maximum window size are (εn1−x, n1−x), respectively.

(4) There are only Õ(1/ε) different window sizes.

10

Let us comment on these properties. Clearly (1) is desirable, as it reduces the global edit distance
problem to the window edit distance problem. Furthermore, it composes nicely with approximation
algorithms for the window edit distance problem. (2) is also intuitive: if there are superlinearly
many windows, then computing all edit distance pairs would be superquadratic with the naive
algorithm. Properties (3) and (4) ensure that we do not need to run too many rounds of search for
our algorithm with our discretization technique. More precisely, for handling high and low degree
windows, we grid search through all thresholds ξ that are powers of (1 + ε) and all window sizes
λ. Then (3) and (4) ensure that there are in total Õε(1) such combinations.

2. Next, we determine whether each window w′ ∈ Ws′ is high degree or low degree with respect to
a threshold ξ and window size λ using random sampling. We sample non-overlapping windows of
Ws, each of length λ. For each of these sampled w, we compute ed(w,w′), and take the median
value. We report that w′ is high degree if the median value is greater than ξ(1+ε), and analogously
for reporting low degree.

3. Now we handle the high degree windows. In fact, there’s nothing to do here — for a high degree
window w′ with respect to threshold ξ and window size λ, we just report all edges from w′ to
windows w of size λ. For correctness, we apply Lemma 4.2 to multiple nonoverlapping subsets.
With a bit more work, one can show that we only report a small number of false positives, i.e.
edges (w,w′) that actually have ed(w,w′) > ξ(1 + ε).

4. Next, we handle the low degree windows. Since the windows are low degree, we attempt to find
almost all windows w ∈ Ws of size λ with ed(w,w′) < ε. Similarly to Section 3.3, we consider
extensions, and there are two possibilities we have to deal with. Consider the following thought
experiment. Using the construction of step 1, devise slightly larger windows of size n1−x′ in step
1. Now consider the number of low degree windows that are contained in the same large window.

• If there are not too many adjacent low degree windows, we ignore them altogether. Similarly
to step 2, this produces negligible error.

• Otherwise, when we sample random windows with probability O(logn

ε2nx−x′−(1−δ)), we hit one of
the low degree windows whp. By trying all possibilities for ξ, λ we get an expected sample
size of Õε(n

x′+2(1−δ)).

5. Finally, we refine the solution via dynamic programming. We have omitted the details in this paper,
but remark that this is the same as the dynamic program referenced in Section 3.1. However, a
complication arises in that we might now find fake solutions due to the false positives from step 3.
To remedy this, we check all the partial solutions in the DP solution, and count how many false
positives there are. Since ed(w,w′) is at most the maximum window size n1−x, if there few false
positives, then the error incurred to the global edit distance solution is also small, and we neglect
to deal with these false positives.

Otherwise, there are many false positives, and we remove all these false positive edges from the
window graph and rerun the DP. We give a more formal runtime bound below.

4.4 Optimizing Runtime

A formal analysis provides precise runtimes in terms of the parameters described in Section 4.3. For
the sake of expositional clarity, we omit these proofs, but we refer the interested reader to [5]. We can
then combine the various hypotheses for the correctness of the algorithm. As each comes in the form
of a linear constraint on these parameters. The runtime can thus optimized with an LP. When solved,
we obtain an expected runtime of O(n1.898), which is truly subquadratic. This can be strengthened to
a high probability guarantee.

Theorem 4.4. There exists a randomized algorithm which runs in expected O(n1.898) for smoothed ED
and approximates the solution to 1 + o(1). Furthermore, there is a randomized algorithm with the same
big-O runtime and approximation factor that fails with probability at most O(1/n3).

11

5 Conclusion

In this paper, we summarized key ideas from recent subquadratic time approximation algorithms for
edit distance, first in the worst-case setting and then in a smoothed setting. The primary insight used in
both papers is to divide the problem into subproblems and then use sparsification. A follow-up question
might be whether there exists an alternative to Lemma 4.2 without relying on the assumption of the
smoothed setting, which could motivate a similar 1 + o(1) approximation in the worst-case setting.

References

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for lcs
and other sequence similarity measures. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science, pages 59–78. IEEE, 2015.

[2] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams. Sim-
ulating branching programs with edit distance and friends: or: a polylog shaved is a lower bound
made. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages
375–388, 2016.

[3] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless seth is false). In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pages 51–58, 2015.

[4] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi HajiAghayi, and Saeed Sed-
dighin. Approximating edit distance in truly subquadratic time: Quantum and mapreduce. Journal
of the ACM (JACM), 68(3):1–41, 2021.

[5] Mahdi Boroujeni, Masoud Seddighin, and Saeed Seddighin. Improved algorithms for edit distance
and lcs: beyond worst case. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1601–1620. SIAM, 2020.

[6] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Kouckỳ, and Michael Saks. Ap-
proximating edit distance within constant factor in truly sub-quadratic time. Journal of the ACM
(JACM), 67(6):1–22, 2020.

[7] Gad M Landau, Eugene W Myers, and Jeanette P Schmidt. Incremental string comparison. SIAM
Journal on Computing, 27(2):557–582, 1998.

12

	Introduction
	High-Level Overview
	Approximating Edit Distance to a Constant Factor
	An Overview of the Covering Algorithm
	Reducing Amortized Runtime of Certifying Boxes
	Reducing Number of Boxes to be Certified for Sparse Pivots

	Better Approximation Ratio in a Smoothed Setting
	Discretization Techniques
	Windows and the Window Graph
	Putting the Pieces Together
	Optimizing Runtime

	Conclusion

