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Abstract

We study the Maximum Cut and Minimum Bisection problems on random 𝑑-regular graphs. We
will show how to connect these classical graph problems to a family of associated Gibbs measures, and
then sketch out how to use the so-called interpolation method to characterize the precise behavior of
these problems. In particular, this approach is the one carried out by [DMS17], who show that with high

probability, 1
𝑛 MaxCut(𝐺) = 𝑑

4 +𝑃∗
√

𝑑
4 +𝑜(

√
𝑑), where 𝑃∗ ≈ 0.763 is the Parisi constant from statistical physics.

1 MaxCut and MinBisection
Let 𝐺 = (𝑉, 𝐸) be a graph with 𝑛 vertices and 𝑚 edges. A cut is a partition (𝑆, 𝑆𝑐) of the vertices, and the
size of the cut is 𝐸(𝑆, 𝑆𝑐), the number of edges that cross the cut from 𝑆 to 𝑆𝑐 .

A fundamental question in theoretical computer science is to determine the maximum cut of a graph,
which we call MaxCut. Similarly, MinBis is the problem of determinine the minimum cut subject to the
partition being balanced: |𝑆 | = ⌊𝑛/2⌋.

Let us formulate these problems more precisely in a form that will be suggestive for our overall approach.
Some useful notation: Ω𝑛 =

{
𝑥 ∈ {±1}𝑛 |∑ 𝑥𝑖 = 0

}
(we’ll assume that 𝑛 is even throughout):

max
𝑥∈{±1}𝑛

1
4

∑
(𝑖 , 𝑗)∈𝐸

(𝑥𝑖 − 𝑥 𝑗)2 =
|𝐸 |
2 − 1

2 min
𝑥∈{±1}𝑛

∑
(𝑖 , 𝑗)∈𝐸

𝑥𝑖𝑥 𝑗 (MaxCut)

min
𝑥∈Ω𝑛

1
4

∑
(𝑖 , 𝑗)∈𝐸

(𝑥𝑖 − 𝑥 𝑗)2 =
|𝐸 |
2 − 1

2 max
𝑥∈Ω𝑛

∑
(𝑖 , 𝑗)∈𝐸

𝑥𝑖𝑥 𝑗 (MinBis)

Famously, MaxCut and MinBis are both NP-hard for worst-case graphs. If we allow ourselves to consider
random instances, the story becomes more interesting.

Remark 1.1. For worst-case instances, the problem of approximating the MaxCut is an extremely interesting
question, which we won’t have time to cover. The famous Goemans-Williamson SDP relaxation gives
a 0.878-approximation to MaxCut, with better approximation ratios known for special classes of graphs.
Amazingly, this is essentially tight for worst-case instances — it is unique-games hard to approximate MaxCut
better than the SDP.

For concreteness, we will consider random 𝑑-regular graphs on 𝑛 vertices, where 𝑑 is a constant. One
can transfer over these results to the Erdős-Rényi random graph model 𝐺(𝑛, 𝑑/𝑛), but directly analyzing
𝐺(𝑛, 𝑑/𝑛) in this sparse regime is more annoying.

A lot of effort has gone into characterizing MaxCut and MinBis on sparse random graph models. For
isntance, consider the random edge model 𝐺(𝑛, ⌊𝑑𝑛⌋). With some knowledge of random graphs and the
trusty moment method, one can establish that there’s a phase transition for MaxCut at 𝑑∗ = 1

2 and MinBis at
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𝑑∗ = log 2. In particular, for both problems, below the critical degree parameter, the (excess) cut size is 𝑂(1),
whereas above, the cut size is Ω(𝑛).

Even restricted to random graph settings, this problem has been studied for decades (see, e.g., [Bol88,
FO05, CO07, BGT10, GL18], just to name a few). A variety of techniques have been used to bound the
cut sizes, such as spectral relaxations / SDPs — this may seem natural given the quadratic programming
formulation in (MaxCut) and (MinBis). As a brief demonstration of this approach, one can relax min bisection
to a spectral relaxation with the graph Laplacian. From this, we can observe that on random 𝑑-regular graphs,
combined with Friedman’s theorem, that with high probability 1

𝑛MinBis(𝐺) ⩾ 𝑑
4 −

√
𝑑 − 1. The upshot of this

line of research is that MinBis(𝐺) = 𝑛𝑑
4 − Θ(

√
𝑑)𝑛 and MaxCut(𝐺) = 𝑛𝑑

4 + Θ(
√
𝑑)𝑛, where Θ is asymptotic in

𝑑. Since a 𝑑-regular graph has 𝑑𝑛
2 edges, comparing against (MaxCut) and (MinBis) means that these results

are equivalent to showing that

min
𝑥∈{±1}𝑛

∑
(𝑖 , 𝑗)∈𝐸

𝑥𝑖𝑥 𝑗 = −Θ(
√
𝑑)𝑛

max
𝑥∈Ω𝑛

∑
(𝑖 , 𝑗)∈𝐸

𝑥𝑖𝑥 𝑗 = Θ(
√
𝑑)𝑛,

respectively. The main goal of this talk is to pin down the leading order behavior for this Θ(
√
𝑑) term; in

other words, we will explicitly(!) pin down the constant in front of
√
𝑑.

2 Ising models
To get to the correct behavior, we will study a Gibbs measure! This might be surprising if you haven’t seen
these types of arguments before. Physicists were able to give predictions for the behavior of MaxCut and
MinBis in these settings, but rigorous proofs were lacking. Let us first recall the definition of Gibbs measures
on the hypercube.

Definition 2.1 (Gibbs measure and free energy). A Gibbs measure on {±1}𝑛 is specified by a Hamiltonian
𝐻 : {±1}𝑛 → R and an inverse temperature parameter 𝛽 ∈ R with �𝛽,𝐻(𝑥) ∝ exp(𝛽𝐻(𝑥)). When 𝛽, 𝐻 are
clear from context, we will omit these subscripts. The partition function is defined by

𝑍𝐻(𝛽) ≜
∑

𝑥∈{±1}𝑛
exp(𝛽𝐻(𝑥)),

and the normalized free energy is given by

𝜙𝑛,𝐻(𝛽) =
1
𝑛

log𝑍𝐻(𝛽).

If 𝐻 is deterministic, then we will often drop this subscript. If 𝐻 is random, then we instead define
the normalized free energy by 𝜙𝑛(𝛽) = 1

𝑛 E log𝑍(𝛽), where the expectation is taken over the disorder
(randomness) of 𝐻.

What is the connection between these Gibbs measures and MaxCut and MinBis? We actually have the
following generic fact about the free energy of a Gibbs measure:

Fact 2.2. Fix a Hamiltonian 𝐻 : {±1}𝑛 → R. Let 𝑒max = 1
𝑛 max𝑥∈{±1}𝑛 𝐻(𝑥) and 𝑒min = 1

𝑛 min𝑥∈{±1}𝑛 𝐻(𝑥). For
all 𝛽 > 0, we have

𝑒max ⩽
1
𝛽
𝜙𝑛(𝛽) ⩽ 𝑒max +

log 2
𝛽

,

and for 𝛽 < 0, we have

−𝑒min ⩾
1
𝛽
𝜙𝑛(𝛽) ⩾ −𝑒min +

log 2
|𝛽 | .
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Proof. By definition,

𝜙𝑛(𝛽) =
1
𝑛

log𝑍(𝛽) = 1
𝑛

log
∑

𝑥∈{±1}𝑛
exp(𝛽𝐻(𝑥)).

Thus, we can crudely estimate

𝛽𝑒max ⩽ 𝜙𝑛(𝛽) ⩽
1
𝑛

log
(
2𝑛 · exp(𝑛𝛽𝑒max )

)
⩽ 𝛽𝑒max + log 2.

The proof for the 𝛽 → −∞ case is the same by replacing 𝐻 with −𝐻. □

Remark 2.3. The above lemma clearly holds if 𝐻 is random, by redefining the quantities in terms of their
quenched averages (taking E over the randomness in 𝐻 everywhere).

In view of the above fact, together with (MaxCut), (MinBis), we will study the free energy of a certain
Gibbs measure associated to the sparse graph called a diluted Ising model.

Definition 2.4 (Ising model). Let 𝛽 ∈ R, and 𝐺 = (𝑉, 𝐸) be a graph on 𝑛 vertices, and let 𝐴 be its adjacency
matrix. The diluted Ising model on a sparse graph 𝐺 is the Gibbs measure with Hamiltonian 𝐻D(𝑥) =∑

(𝑖 , 𝑗)∈𝐸 𝑥𝑖𝑥 𝑗 = 𝑥⊤𝐴𝑥. In other words,

�D
𝛽 (𝑥) ∝ exp©«𝛽

∑
𝑖∼𝑗

𝑥𝑖𝑥 𝑗
ª®¬ = exp

(
𝛽𝑥⊤𝐴𝑥

)
.

We denote the free energy by 𝜙D
𝑛 (𝛽), and if 𝐺 is a sparse random graph then we take expectation over the

randomness in 𝐺, as usual.

Notice that we allow 𝛽 to be negative, which might look strange, but this gives us flexibility in studying
both MaxCut and MinBis on equal footing.

We will study the free energy of the Ising model on 𝐺 for different values of 𝛽. Clearly, E MaxCut(𝐺) =
𝑒D

min = lim𝛽→−∞
1
|𝛽 |𝜙

D
𝑛 (𝛽), and E MinBis(𝐺) has an analogous formula, except now the configuration space is

restricted to Ω𝑛 instead of {±1}𝑛 .
Hence, we have reduced the problem of studying MinBis to studying the large 𝛽 behavior of the free

energy of a certain Ising model. How will we get a handle on this free energy? The key idea is to relate it to
the free energy of a model that we do understand. This will look a little strange at first, but it turns out to
be a very powerful idea which is fruitful in other settings at well.

To be concrete, we will relate the free energy of our Ising model to the free energy of the Sherrington-
Kirkpatrick model, which is the canonical mean-field spin glass.

Definition 2.5 (SK Model). Let 𝑊 ∼ GOE(𝑛) be a GOE matrix. In particular, 𝑊 is a symmetric matrix with
𝑊𝑖 𝑗 ∼ 𝑁(0, 1

𝑛 ) for 𝑖 < 𝑗 and 𝑊𝑖𝑖 ∼ 𝑁(0, 2
𝑛 ). The SK model is the Gibbs measure with 𝐻(𝑥) = 𝑥⊤𝑊𝑥, so for

𝛽 ⩾ 0 we have
�SK
𝛽 (𝑥) ∝ exp

(
𝛽𝑥⊤𝑊𝑥

)
.

The partition function is given by 𝑍SK(𝛽) = ∑
𝑥∈{±1}𝑛 exp(𝛽𝑥⊤𝑊𝑥), the free energy is 𝜙SK

𝑛 (𝛽) = 1
𝑛 E log𝑍SK(𝛽),

and the (expected) ground state energies are 𝑒SK
max = 1

𝑛 E max𝑥∈{±1}𝑛 𝐻(𝑥) and 𝑒SK
min = 1

𝑛 E min𝑥∈{±1}𝑛 𝐻(𝑥).

As alluded to, the free energy of the SK model is quite well understood. In particular, its behavior is
governed by the celebrated Parisi formula [Tal06], which we will not attempt to prove here.
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Theorem 2.6 (Parisi’s formula). For the SK model, we have

− lim
𝑛→∞

𝑒SK
min = lim

𝑛→∞
𝑒SK

max = P∗ ,

where P∗ ≈ 0.763 is the Parisi constant.

The main theorem that we will sketch the proof of is the following:

Theorem 2.7 ([DMS17]). Let 𝐺 be a random 𝑑-regular graph. Then with probability 1 − 𝑜𝑛(1), we have

1
𝑛

MaxCut(𝐺) = 𝑑

4 + P∗

√
𝑑

4 + 𝑜𝑑(
√
𝑑)

1
𝑛

MinBis(𝐺) = 𝑑

4 − P∗

√
𝑑

4 + 𝑜𝑑(
√
𝑑).

First, by a standard second moment argument, we will argue that it suffices to instead study the quenched
quantities E 1

𝑛MaxCut(𝐺) = 𝑒D
min and E 1

𝑛MinBis(𝐺) = 𝑒D
max . Roughly, the argument goes as follows. By

constructing a coupling of the graph distributions, it suffices to study the problem when the graph model
is an 𝐺(𝑛, 2𝑑𝑛), or Poissonized version. Then, one can use the fact that the number of edges concentrates
tightly around 2𝑑𝑛 and Efron-Stein to conclude that the variance of the MaxCut is 𝑂(𝑛), in comparison to
the expectation, which is Ω(𝑛). So we have reduced the problem to studying the expected max cut or min
bisection on your favorite random graph model of fixed average degree 𝑑.

3 Interpolation
The main idea of the proof is to interpolate between the free energies of the Ising model and the SK model.
Using it, we will prove the following crucial lemma:

Lemma 3.1 ([DMS17, Proposition 2.2]). There exists universal constants 𝐶1 , 𝐶2 > 0 such that���𝜙D
𝑛

(
1√
𝑑
𝛽
)
− 𝜙SK

𝑛 (𝛽)
��� ⩽ 𝐶1

|𝛽 |3
√
𝑑
+ 𝐶2

𝛽4

𝑑
.

In particular, setting |𝛽 | = 𝑑1/6, we get����1𝛽 𝜙D
𝑛

(
1√
𝑑
𝛽
)
− 1

𝛽
𝜙SK
𝑛 (𝛽)

���� ⩽ 𝑂𝑑(𝑑−1/6).

Once we establish the above lemma, it is not hard to see how to obtain the desired result.

Proof sketch for Theorem 2.7. By triangle inequality, we have���� 1√
𝑑
𝑒D

max − 𝑒SK
max

���� ⩽ ���� 1√
𝑑
𝑒D

max − 1
𝛽
𝜙D
𝑛 ( 1√

𝑑
𝛽)

���� + ����1𝛽 𝜙D
𝑛 ( 1√

𝑑
𝛽) − 1

𝛽
𝜙SK
𝑛 (𝛽)

���� + ����1𝛽 𝜙SK
𝑛 (𝛽) − 𝑒SK

max

����.
By Fact 2.2, we can upper bound the first and third terms by log 2

𝛽 , and setting 𝛽 = 𝑑1/6 we can apply
Lemma 3.1 to get an overall bound of 𝑂(𝑑−1/6). Hence,���� 1√

𝑑
𝑒D

max − 𝑒SK
max

���� = 𝑂(𝑑−1/6).

By Theorem 2.6, as 𝑛 → ∞, we have −𝑒SK
min = 𝑒SK

max → P∗. It follows that 𝑒D
max = P∗

√
𝑑 + 𝑂(𝑑1/3), so that

1
𝑛 E MinBis(𝐺) = 𝑛𝑑

4 − P∗

√
𝑑
4 + 𝑜(

√
𝑑). □
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So, what is interpolation? The idea is that we interpolate between the Hamiltonians of the two models.
For 𝑑 ∈ R (not necessarily an integer), let 𝐻D

𝑑
(𝑥) = ∑

(𝑖 , 𝑗)∈𝐸 𝑥𝑖𝑥 𝑗 where 𝐺 ∼ 𝐺Poi(𝑛, 𝑑). Hereafter, we will
suppress the dependence on 𝑛 and 𝛽 for simplicity.

In particular, for 𝑡 ∈ [0, 1], define the interpolating Hamiltonian 𝐻𝑡(𝑥) = 1√
𝑑
𝐻D

𝑑(1−𝑡)(𝑥) +
√
𝑡𝐻SK(𝑥).1 The

corresponding free energy is just 𝜙(𝑡) = 1
𝑛 E log𝑍𝑡 , where 𝑍𝑡 =

∑
𝑥∈{±1}𝑛 exp(𝛽𝐻𝑡(𝑥)), and here E is over

the disorder in both the SK hamiltonian (iid Gaussians) and the Poissonized graph 𝐺 ∼ 𝐺Poi(𝑛, 𝑑(1 − 𝑡)).
Observe that 𝐻0 = 𝐻D

𝑑
and 𝐻1 = 𝐻SK, from which we conclude that��𝜙SK − 𝜙D

𝑑

�� = ��𝜙(1) − 𝜙(0)
�� = ����∫ 1

0

𝜕𝜙(𝑡)
𝜕𝑡

d𝑡
����

⩽

∫ 1

0

����𝜕𝜙(𝑡)𝜕𝑡

����d𝑡 .
Thus, it suffices to bound the derivative of the interpolating free energy. The crucial formula is the following,
which we will not prove in full detail on the board (but I will record it here for reference):

Lemma 3.2 ([DMS17, Equations 2.17, 2.18]). We have

𝜕𝜙(𝑡)
𝜕𝑡

=

(
𝜕𝜙(𝑡)
𝜕𝑡

)
SK

+
(
𝜕𝜙(𝑡)
𝜕𝑡

)
D(

𝜕𝜙(𝑡)
𝜕𝑡

)
SK

=
𝛽2

4 (1 −
〈
𝑅2

2
〉
𝑡
)(

𝜕𝜙(𝑡)
𝜕𝑡

)
D
= −𝑑 log cosh

(
𝛽
√
𝑑

)
+ 𝑑

∑
ℓ⩾1

(−1)ℓ
ℓ

tanh
(
𝛽
√
𝑑

)ℓ
E[

〈
𝑅2
ℓ

〉
𝑡
],

where 𝑅ℓ ≜
1
𝑛

∑
𝑖∈[𝑛]

∏
𝑘∈[ℓ ] 𝜎𝑘[ℓ ], where (𝜎𝑘)𝑘⩾1 are iid samples (replicas) from �𝐻𝑡 .

The proof is somewhat technical, but we will sketch out the main ideas.

Proof sketch. Below, recall that 𝐺 is the randomness of the diluted graph with average degree 𝑑(1 − 𝑡), and
𝑊 ∼ GOE(𝑛) is the randomness in the SK Hamiltonian. Recall now that 𝐻𝑡(𝜎) = 1√

𝑑
𝐻D

𝑑(1−𝑡)(𝜎) +
√
𝑡𝐻SK(𝜎).

Hence, if we condition on the randomness in 𝐺, then the only 𝑡 dependence in 𝐻𝑡 is through the SK term.
By writing out the definition of 𝜙(𝑡) = 1

𝑛 E𝐺,𝑊 log𝑍𝑡(𝐺,𝑊), we see that

𝜕𝑡𝜙(𝑡) =
1
𝑛

E
𝐺,𝑊

𝜕𝑡𝑍𝑡

𝑍𝑡
=

1
𝑛

E
𝑊

𝜕𝑡
∑

𝜎∈{±1}𝑛 exp(𝛽𝐻𝑡(𝜎))
𝑍𝑡︸                                ︷︷                                ︸

(𝜕𝑡𝜙(𝑡))SK

+ 1
𝑛

E
𝐺

stuff(G)︸         ︷︷         ︸
(𝜕𝑡𝜙(𝑡))D

,

=
1
𝑛

E
∑

𝜎∈{±1}𝑛 𝛽𝜕𝑡(𝐻𝑡(𝜎)) exp(𝛽𝐻𝑡(𝜎))
𝑍𝑡

+ (𝜕𝑡𝜙(𝑡))D

=
𝛽

2
√
𝑡𝑛

〈
𝐻SK(𝜎)

〉
𝑡
+ (𝜕𝑡𝜙(𝑡))D.

Here, stuff(𝐺) is what we get by taking the time derivative of the 𝑡 dependent measure for the random graph
𝐺. This is where we will use the Poissonized graph model, to make this measure product.

Let us focus on the SK part, since this is fairly standard and not too difficult to compute. The main idea
is that we can use Gaussian integration by parts, which states the following: If 𝑮 = (𝐺(𝜎))𝜎∈Σ is a centered
Gaussian process over a finite index set Σ, and 𝑓 is a sufficiently nice function, then

E[𝐺(𝜎) 𝑓 (𝑮)] =
∑
𝜏∈Σ

E[𝐺(𝜎)𝐺(𝜏)]E[𝜕𝐺(𝜏) 𝑓 (𝑮)].

1The reason for putting the 1 − 𝑡 in the graph parameter is to preserve the first and second moments of the Hamiltonian process.
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The crucial observation is that the Hamiltonian itself 𝐻SK(𝜎) is a centered Gaussian process over Σ = {±1}𝑛
with E[𝐻SK(𝜎)𝐻SK(𝜏)] = 1

2𝑅(𝜎, 𝜏)2. Hence, we can apply the above formula with 𝐺(𝜎) = 𝐻SK(𝜎) and
𝑓 (𝑮) = �𝐻𝑡 (𝜎). By calculus, we have 𝜕𝐻SK(𝜏)

exp(𝛽𝐻𝑡 (𝜎))
𝑍𝑡

= 𝛽
√
𝑡 · (𝛿𝜎=𝜏�𝐻𝑡 (𝜎) − �𝐻𝑡 (𝜎)�𝐻𝑡 (𝜏)), so we get

E
〈
𝐻SK(𝜎)

〉
𝑡
=

∑
𝜎

E[𝐻SK(𝜎)�𝐻𝑡 (𝜎)]

=
∑
𝜎,𝜏

E[𝐻SK(𝜎)𝐻SK(𝜏)]E[𝜕𝐻SK(𝜏)�𝐻𝑡 (𝜎)] (Gaussian integration by parts)

=
1
2𝛽

√
𝑡 ·

(∑
𝜎

E[�𝐻𝑡 (𝜎)] −
∑
𝜎≠𝜏

𝑅(𝜎, 𝜏)2 E[�𝐻𝑡 (𝜎)�𝐻𝑡 (𝜏)]
)

=
1
2𝛽

√
𝑡 ·

(
1 − E

〈
𝑅(𝜎, 𝜏)2

〉
𝑡

)
.

To summarize, we have just proved that

(𝜕𝑡𝜙(𝑡))SK =
𝛽2

4 (1 − E
〈
𝑅2

2
〉
𝑡
).

We will not go into the calculation for the diluted part, because it is a little technical, but you can check
out [DMS17] for the details. The high level idea is to use a “Poisson integration by parts” identity, which
yields a tractable analytic formula for the time derivative. The nasty form of the final formula comes from
writing down some algebraic identities and Taylor expanding the result. □

Remark 3.3. The actual proof has some additional subtleties that I swept under the rug. Firstly, in order to
get the correct asymptotics, we need to actually expand out the above infinite series in a clever way to get
higher order Taylor terms. In turn, this requires getting a tight control on E

〈
𝑅2

1
〉
𝑡
, which is the expected

square of the magnetization. A clever way around this issue is to instead study the restricted Gibbs measures
on Ω𝑛 , in which case 𝑅1 = 0 by definition. One then has to show that the Parisi formula is correct when
restricted to Ω𝑛 , which requires another argument.
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